763,307 research outputs found

    A Short Tale of Long Tail Integration

    Full text link
    Integration of the form ∫a∞f(x)w(x)dx\int_a^\infty {f(x)w(x)dx} , where w(x)w(x) is either sin⁑(Ο‰x)\sin (\omega {\kern 1pt} x) or cos⁑(Ο‰x)\cos (\omega {\kern 1pt} x), is widely encountered in many engineering and scientific applications, such as those involving Fourier or Laplace transforms. Often such integrals are approximated by a numerical integration over a finite domain (a, b)(a,\,b), leaving a truncation error equal to the tail integration ∫b∞f(x)w(x)dx\int_b^\infty {f(x)w(x)dx} in addition to the discretization error. This paper describes a very simple, perhaps the simplest, end-point correction to approximate the tail integration, which significantly reduces the truncation error and thus increases the overall accuracy of the numerical integration, with virtually no extra computational effort. Higher order correction terms and error estimates for the end-point correction formula are also derived. The effectiveness of this one-point correction formula is demonstrated through several examples

    Accuracy analysis of the box-counting algorithm

    Full text link
    Accuracy of the box-counting algorithm for numerical computation of the fractal exponents is investigated. To this end several sample mathematical fractal sets are analyzed. It is shown that the standard deviation obtained for the fit of the fractal scaling in the log-log plot strongly underestimates the actual error. The real computational error was found to have power scaling with respect to the number of data points in the sample (ntotn_{tot}). For fractals embedded in two-dimensional space the error is larger than for those embedded in one-dimensional space. For fractal functions the error is even larger. Obtained formula can give more realistic estimates for the computed generalized fractal exponents' accuracy.Comment: 3 figure

    A Posteriori Error Control for the Binary Mumford-Shah Model

    Full text link
    The binary Mumford-Shah model is a widespread tool for image segmentation and can be considered as a basic model in shape optimization with a broad range of applications in computer vision, ranging from basic segmentation and labeling to object reconstruction. This paper presents robust a posteriori error estimates for a natural error quantity, namely the area of the non properly segmented region. To this end, a suitable strictly convex and non-constrained relaxation of the originally non-convex functional is investigated and Repin's functional approach for a posteriori error estimation is used to control the numerical error for the relaxed problem in the L2L^2-norm. In combination with a suitable cut out argument, a fully practical estimate for the area mismatch is derived. This estimate is incorporated in an adaptive meshing strategy. Two different adaptive primal-dual finite element schemes, and the most frequently used finite difference discretization are investigated and compared. Numerical experiments show qualitative and quantitative properties of the estimates and demonstrate their usefulness in practical applications.Comment: 18 pages, 7 figures, 1 tabl
    • …
    corecore