63 research outputs found

    Supporting Internet Access and Quality of Service in Distributed Wireless Ad Hoc Networks

    Get PDF
    In this era of wireless hysteria, with continuous technological advances in wireless communication and new wireless technologies becoming standardized at a fast rate, we can expect an increased interest for wireless networks, such as ad hoc and mesh networks. These networks operate in a distributed manner, independent of any centralized device. In order to realize the practical benefits of ad hoc networks, two challenges (among others) need to be considered: distributed QoS guarantees and multi-hop Internet access. In this thesis we present conceivable solutions to both of these problems. An autonomous, stand-alone ad hoc network is useful in many cases, such as search and rescue operations and meetings where participants wish to quickly share information. However, an ad hoc network connected to the Internet is even more desirable. This is because Internet plays an important role in the daily life of many people by offering a broad range of services. In this thesis we present AODV+, which is our solution to achieve this network interconnection between a wireless ad hoc network and the wired Internet. Providing QoS in distributed wireless networks is another challenging, but yet important, task mainly because there is no central device controlling the medium access. In this thesis we propose EDCA with Resource Reservation (EDCA/RR), which is a fully distributed MAC scheme that provides QoS guarantees by allowing applications with strict QoS requirements to reserve transmission time for contention-free medium access. Our scheme is compatible with existing standards and provides both parameterized and prioritized QoS. In addition, we present the Distributed Deterministic Channel Access (DDCA) scheme, which is a multi-hop extension of EDCA/RR and can be used in wireless mesh networks. Finally, we have complemented our simulation studies with real-world ad hoc and mesh network experiments. With the experience from these experiments, we obtained a clear insight into the limitations of wireless channels. We could conclude that a wise design of the network architecture that limits the number of consecutive wireless hops may result in a wireless mesh network that is able to satisfy users’ needs. Moreover, by using QoS mechanisms like EDCA/RR or DDCA we are able to provide different priorities to traffic flows and reserve resources for the most time-critical applications

    Multipath routing and QoS provisioning in mobile ad hoc networks

    Get PDF
    PhDA Mobile Ad Hoc Networks (MANET) is a collection of mobile nodes that can communicate with each other using multihop wireless links without utilizing any fixed based-station infrastructure and centralized management. Each mobile node in the network acts as both a host generating flows or being destination of flows and a router forwarding flows directed to other nodes. Future applications of MANETs are expected to be based on all-IP architecture and be capable of carrying multitude real-time multimedia applications such as voice and video as well as data. It is very necessary for MANETs to have an efficient routing and quality of service (QoS) mechanism to support diverse applications. This thesis proposes an on-demand Node-Disjoint Multipath Routing protocol (NDMR) with low broadcast redundancy. Multipath routing allows the establishment of multiple paths between a single source and single destination node. It is also beneficial to avoid traffic congestion and frequent link breaks in communication because of the mobility of nodes. The important components of the protocol, such as path accumulation, decreasing routing overhead and selecting node-disjoint paths, are explained. Because the new protocol significantly reduces the total number of Route Request packets, this results in an increased delivery ratio, smaller end-to-end delays for data packets, lower control overhead and fewer collisions of packets. Although NDMR provides node-disjoint multipath routing with low route overhead in MANETs, it is only a best-effort routing approach, which is not enough to support QoS. DiffServ is a standard approach for a more scalable way to achieve QoS in any IP network and could potentially be used to provide QoS in MANETs because it minimises the need for signalling. However, one of the biggest drawbacks of DiffServ is that the QoS provisioning is separate from the routing process. This thesis presents a Multipath QoS Routing protocol for iv supporting DiffServ (MQRD), which combines the advantages of NDMR and DiffServ. The protocol can classify network traffic into different priority levels and apply priority scheduling and queuing management mechanisms to obtain QoS guarantees

    PERFORMANCE STUDY FOR CAPILLARY MACHINE-TO-MACHINE NETWORKS

    Get PDF
    Communication technologies witness a wide and rapid pervasiveness of wireless machine-to-machine (M2M) communications. It is emerging to apply for data transfer among devices without human intervention. Capillary M2M networks represent a candidate for providing reliable M2M connectivity. In this thesis, we propose a wireless network architecture that aims at supporting a wide range of M2M applications (either real-time or non-real-time) with an acceptable QoS level. The architecture uses capillary gateways to reduce the number of devices communicating directly with a cellular network such as LTE. Moreover, the proposed architecture reduces the traffic load on the cellular network by providing capillary gateways with dual wireless interfaces. One interface is connected to the cellular network, whereas the other is proposed to communicate to the intended destination via a WiFi-based mesh backbone for cost-effectiveness. We study the performance of our proposed architecture with the aid of the ns-2 simulator. An M2M capillary network is simulated in different scenarios by varying multiple factors that affect the system performance. The simulation results measure average packet delay and packet loss to evaluate the quality-of-service (QoS) of the proposed architecture. Our results reveal that the proposed architecture can satisfy the required level of QoS with low traffic load on the cellular network. It also outperforms a cellular-based capillary M2M network and WiFi-based capillary M2M network. This implies a low cost of operation for the service provider while meeting a high-bandwidth service level agreement. In addition, we investigate how the proposed architecture behaves with different factors like the number of capillary gateways, different application traffic rates, the number of backbone routers with different routing protocols, the number of destination servers, and the data rates provided by the LTE and Wi-Fi technologies. Furthermore, the simulation results show that the proposed architecture continues to be reliable in terms of packet delay and packet loss even under a large number of nodes and high application traffic rates

    Mobile Ad hoc Networking: Imperatives and Challenges

    Get PDF
    Mobile ad hoc networks (MANETs) represent complex distributed systems that comprise wireless mobile nodes that can freely and dynamically self-organize into arbitrary and temporary, "ad-hoc" network topologies, allowing people and devices to seamlessly internetwork in areas with no pre-existing communication infrastructure, e.g., disaster recovery environments. Ad hoc networking concept is not a new one, having been around in various forms for over 20 years. Traditionally, tactical networks have been the only communication networking application that followed the ad hoc paradigm. Recently, the introduction of new technologies such as the Bluetooth, IEEE 802.11 and Hyperlan are helping enable eventual commercial MANET deployments outside the military domain. These recent evolutions have been generating a renewed and growing interest in the research and development of MANET. This paper attempts to provide a comprehensive overview of this dynamic field. It first explains the important role that mobile ad hoc networks play in the evolution of future wireless technologies. Then, it reviews the latest research activities in these areas, including a summary of MANET\u27s characteristics, capabilities, applications, and design constraints. The paper concludes by presenting a set of challenges and problems requiring further research in the future

    Quality of service schemes for mobile ad-hoc networks

    Get PDF
    To achieve QoS, independently of the routing protocol, each mobile node participating in the network must implement traffic conditioning, traffic marking and buffer management (Random Early Drop with in- out dropping) or queue scheduling (Priority Queuing) schemes. In MANETs, since the mobile nodes can have simultaneous multiple roles (ingress, interior and destination), it was found that traffic conditioning and marking must be implemented in all mobile nodes acting as source (ingress) nodes. Buffer management and queue scheduling schemes must be performed by all mobile nodes. By utilizing the Network Simulator (NS2) tool, this thesis focused on the empirical performance evaluation of the QoS schemes for different types of traffic (FTP/TCP, CBR/UDP and VBRI/UDP, geographical areas of different sizes and various mobility levels. Key metrics, such as throughput, end-to-end delay and packet loss rates, were used to measure the relative improvements of QoS- enabled traffic sessions. The results indicate that in the presence of congestion, service differentiation can be achieved under different scenarios and for different types of traffic, whenever a physical connection between two nodes is realizable.http://archive.org/details/qualityofservice109451082

    QOS routing for mobile Ad Hoc networks using genetic algorithm

    Get PDF
    Mobile Ad Hoc Networks (MANETs) are a class of infrastructure less network architecture which are formed by a collection of mobile nodes that communicate with each other using multihop wireless links. They eliminate the need for central management, hence each node must operate cooperatively to successfully maintain the network. Each node performs as a source, a sink and a router. Future applications of MANETs are expected to be based on all-IP architecture, carrying a multitude of real-time multimedia applications such as voice, video and data. It would be necessary for MANETs to have an efficient routing and quality of service (QoS) mechanism to support diverse applications. This thesis proposes a set of cooperative protocols that provide support for QoS routing. The first is the on-demand, Non-Disjoint Multiple Routes Discovery protocol (NDMRD). NDMRD allows the establishment of multiple paths with node non-disjoint between source and destination node. It returns to the source a collection of routes with the QoS parameters. The second part of the protocol is the Node State Monitoring protocol for the purpose of monitoring, acquisition, dissemination and accumulation of QoS route information. The third part of the protocol implements the QoS route selection based on a Genetic Algorithm. The GA is implemented online with predetermined initial population and weighted-sum fitness function which operates simultaneously on the node bandwidth, media access delay, end to end delay and the node connectivity index (n). The term node connectivity index is a numerical value designed to predict comparatively the longest time a node-pair might be connected wirelessly.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    QOS routing for mobile Ad Hoc networks using genetic algorithm

    Get PDF
    Mobile Ad Hoc Networks (MANETs) are a class of infrastructure less network architecture which are formed by a collection of mobile nodes that communicate with each other using multihop wireless links. They eliminate the need for central management, hence each node must operate cooperatively to successfully maintain the network. Each node performs as a source, a sink and a router. Future applications of MANETs are expected to be based on all-IP architecture, carrying a multitude of real-time multimedia applications such as voice, video and data. It would be necessary for MANETs to have an efficient routing and quality of service (QoS) mechanism to support diverse applications. This thesis proposes a set of cooperative protocols that provide support for QoS routing. The first is the on-demand, Non-Disjoint Multiple Routes Discovery protocol (NDMRD). NDMRD allows the establishment of multiple paths with node non-disjoint between source and destination node. It returns to the source a collection of routes with the QoS parameters. The second part of the protocol is the Node State Monitoring protocol for the purpose of monitoring, acquisition, dissemination and accumulation of QoS route information. The third part of the protocol implements the QoS route selection based on a Genetic Algorithm. The GA is implemented online with predetermined initial population and weighted-sum fitness function which operates simultaneously on the node bandwidth, media access delay, end to end delay and the node connectivity index (n). The term node connectivity index is a numerical value designed to predict comparatively the longest time a node-pair might be connected wirelessly.EThOS - Electronic Theses Online ServiceGBUnited Kingdo
    • 

    corecore