4 research outputs found

    Exploiting the Capture Effect to Enhance RACH Performance in Cellular-Based M2M Communications

    Get PDF
    Cellular-based machine-to-machine (M2M) communication is expected to facilitate services for the Internet of Things (IoT). However, because cellular networks are designed for human users, they have some limitations. Random access channel (RACH) congestion caused by massive access from M2M devices is one of the biggest factors hindering cellular-based M2M services because the RACH congestion causes random access (RA) throughput degradation and connection failures to the devices. In this paper, we show the possibility exploiting the capture effects, which have been known to have a positive impact on the wireless network system, on RA procedure for improving the RA performance of M2M devices. For this purpose, we analyze an RA procedure using a capture model. Through this analysis, we examine the effects of capture on RA performance and propose an Msg3 power-ramping (Msg3 PR) scheme to increase the capture probability (thereby increasing the RA success probability) even when severe RACH congestion problem occurs. The proposed analysis models are validated using simulations. The results show that the proposed scheme, with proper parameters, further improves the RA throughput and reduces the connection failure probability, by slightly increasing the energy consumption. Finally, we demonstrate the effects of coexistence with other RA-related schemes through simulation results

    A multi-channel multiple access scheme using frequency offsets — Modelling and analysis

    Get PDF
    A system using frequency offset based transmit- reference (TR) modulation allows multiple nodes to transmit simultaneously and asynchronously without any mutual timing coordination. Thus, such a system provides inherent capabilities for a multiple access in the medium access control (MAC) layer to coordinate the shared use of the common wireless medium among the nodes of the wireless sensor network (WSN). However, certain characteristics of a frequency offset based system limits its performance, for example, the number of available frequency offsets is limited as it depends on several system parameters, and the number of simultaneous communications using different frequency offsets is limited due to inter-user interference. In this paper, we introduce an extended version of the performance model of a basic slotted- Aloha system, that captures the basic phenomena of a multi- channel system with a limited set of channels and a limit to the number of simultaneously used channels. An analysis of this model reveals the potential of a MAC protocol for TR modulation with frequency offsets

    The throughput in multi-channel (slotted) ALOHA: Large deviations and analysis of bad events

    Get PDF
    We consider ALOHA and slotted ALOHA protocols as medium access rules for a multi-channel message delivery system. Users decide randomly and independently with a minimal amount of knowledge about the system at random times to make a message emission attempt. We consider the two cases that the system has a fixed number of independent available channels, and that interference constraints make the delivery of too many messages at a time impossible. We derive probabilistic formulas for the most important quantities like the number of successfully delivered messages and the number of emission attempts, and we derive large-deviation principles for these quantities in the limit of many participants and many emission attempts. We analyse the rate functions and their minimizers and derive laws of large numbers for the throughput. We optimize it over the probability parameter. Furthermore, we are interested in questions like ``if the number of successfully delivered messages is significantly lower than the expectation, was the reason that too many or too few sending attempts were made?''. Our main tools are basic tools from probability and the theory of (the probabilities of) large deviations
    corecore