61,638 research outputs found

    Herding as a Learning System with Edge-of-Chaos Dynamics

    Full text link
    Herding defines a deterministic dynamical system at the edge of chaos. It generates a sequence of model states and parameters by alternating parameter perturbations with state maximizations, where the sequence of states can be interpreted as "samples" from an associated MRF model. Herding differs from maximum likelihood estimation in that the sequence of parameters does not converge to a fixed point and differs from an MCMC posterior sampling approach in that the sequence of states is generated deterministically. Herding may be interpreted as a"perturb and map" method where the parameter perturbations are generated using a deterministic nonlinear dynamical system rather than randomly from a Gumbel distribution. This chapter studies the distinct statistical characteristics of the herding algorithm and shows that the fast convergence rate of the controlled moments may be attributed to edge of chaos dynamics. The herding algorithm can also be generalized to models with latent variables and to a discriminative learning setting. The perceptron cycling theorem ensures that the fast moment matching property is preserved in the more general framework

    A new numerical method for constructing quasi-equilibrium sequences of irrotational binary neutron stars in general relativity

    Get PDF
    We propose a new numerical method to compute quasi-equilibrium sequences of general relativistic irrotational binary neutron star systems. It is a good approximation to assume that (1) the binary star system is irrotational, i.e. the vorticity of the flow field inside component stars vanishes everywhere (irrotational flow), and (2) the binary star system is in quasi-equilibrium, for an inspiraling binary neutron star system just before the coalescence as a result of gravitational wave emission. We can introduce the velocity potential for such an irrotational flow field, which satisfies an elliptic partial differential equation (PDE) with a Neumann type boundary condition at the stellar surface. For a treatment of general relativistic gravity, we use the Wilson--Mathews formulation, which assumes conformal flatness for spatial components of metric. In this formulation, the basic equations are expressed by a system of elliptic PDEs. We have developed a method to solve these PDEs with appropriate boundary conditions. The method is based on the established prescription for computing equilibrium states of rapidly rotating axisymmetric neutron stars or Newtonian binary systems. We have checked the reliability of our new code by comparing our results with those of other computations available. We have also performed several convergence tests. By using this code, we have obtained quasi-equilibrium sequences of irrotational binary star systems with strong gravity as models for final states of real evolution of binary neutron star systems just before coalescence. Analysis of our quasi-equilibrium sequences of binary star systems shows that the systems may not suffer from dynamical instability of the orbital motion and that the maximum density does not increase as the binary separation decreases.Comment: 20 pages, 18 figures, more results of convergence tests are added, revised version accepted for publication in PR

    Dynamical transition in the TASEP with Langmuir kinetics: mean-field theory

    Full text link
    We develop a mean-field theory for the totally asymmetric simple exclusion process (TASEP) with open boundaries, in order to investigate the so-called dynamical transition. The latter phenomenon appears as a singularity in the relaxation rate of the system toward its non-equilibrium steady state. In the high-density (low-density) phase, the relaxation rate becomes independent of the injection (extraction) rate, at a certain critical value of the parameter itself, and this transition is not accompanied by any qualitative change in the steady-state behavior. We characterize the relaxation rate by providing rigorous bounds, which become tight in the thermodynamic limit. These results are generalized to the TASEP with Langmuir kinetics, where particles can also bind to empty sites or unbind from occupied ones, in the symmetric case of equal binding/unbinding rates. The theory predicts a dynamical transition to occur in this case as well.Comment: 37 pages (including 16 appendix pages), 6 figures. Submitted to Journal of Physics

    Invariant Measures for Dissipative Dynamical Systems: Abstract Results and Applications

    Full text link
    In this work we study certain invariant measures that can be associated to the time averaged observation of a broad class of dissipative semigroups via the notion of a generalized Banach limit. Consider an arbitrary complete separable metric space XX which is acted on by any continuous semigroup {S(t)}t0\{S(t)\}_{t \geq 0}. Suppose that §(t)}t0\S(t)\}_{t \geq 0} possesses a global attractor A\mathcal{A}. We show that, for any generalized Banach limit LIMT\underset{T \rightarrow \infty}{\rm{LIM}} and any distribution of initial conditions m0\mathfrak{m}_0, that there exists an invariant probability measure m\mathfrak{m}, whose support is contained in A\mathcal{A}, such that Xϕ(x)dm(x)=LIMT1T0TXϕ(S(t)x)dm0(x)dt, \int_{X} \phi(x) d\mathfrak{m} (x) = \underset{T\to \infty}{\rm{LIM}} \frac{1}{T}\int_0^T \int_X \phi(S(t) x) d \mathfrak{m}_0(x) d t, for all observables ϕ\phi living in a suitable function space of continuous mappings on XX. This work is based on a functional analytic framework simplifying and generalizing previous works in this direction. In particular our results rely on the novel use of a general but elementary topological observation, valid in any metric space, which concerns the growth of continuous functions in the neighborhood of compact sets. In the case when {S(t)}t0\{S(t)\}_{t \geq 0} does not possess a compact absorbing set, this lemma allows us to sidestep the use of weak compactness arguments which require the imposition of cumbersome weak continuity conditions and limits the phase space XX to the case of a reflexive Banach space. Two examples of concrete dynamical systems where the semigroup is known to be non-compact are examined in detail.Comment: To appear in Communications in Mathematical Physic

    Selection theorem for systems with inheritance

    Full text link
    The problem of finite-dimensional asymptotics of infinite-dimensional dynamic systems is studied. A non-linear kinetic system with conservation of supports for distributions has generically finite-dimensional asymptotics. Such systems are apparent in many areas of biology, physics (the theory of parametric wave interaction), chemistry and economics. This conservation of support has a biological interpretation: inheritance. The finite-dimensional asymptotics demonstrates effects of "natural" selection. Estimations of the asymptotic dimension are presented. After some initial time, solution of a kinetic equation with conservation of support becomes a finite set of narrow peaks that become increasingly narrow over time and move increasingly slowly. It is possible that these peaks do not tend to fixed positions, and the path covered tends to infinity as t goes to infinity. The drift equations for peak motion are obtained. Various types of distribution stability are studied: internal stability (stability with respect to perturbations that do not extend the support), external stability or uninvadability (stability with respect to strongly small perturbations that extend the support), and stable realizability (stability with respect to small shifts and extensions of the density peaks). Models of self-synchronization of cell division are studied, as an example of selection in systems with additional symmetry. Appropriate construction of the notion of typicalness in infinite-dimensional space is discussed, and the notion of "completely thin" sets is introduced. Key words: Dynamics; Attractor; Evolution; Entropy; Natural selectionComment: 46 pages, the final journal versio
    corecore