22,751 research outputs found

    Is Having a Unique Equilibrium Robust?

    Get PDF
    We investigate whether having a unique equilibrium (or a given number of equilibria) is robust to perturbation of the payoffs, both for Nash equilibrium and correlated equilibrium. We show that the set of n-player finite games with a unique correlated equilibrium is open, while this is not true of Nash equilibrium for n>2. The crucial lemma is that a unique correlated equilibrium is a quasi-strict Nash equilibrium. Related results are studied. For instance, we show that generic two-person zero-sum games have a unique correlated equilibrium and that, while the set of symmetric bimatrix games with a unique symmetric Nash equilibrium is not open, the set of symmetric bimatrix games with a unique and quasi-strict symmetric Nash equilibrium is

    Nash Equilibria in the Response Strategy of Correlated Games

    Full text link
    In nature and society problems arise when different interests are difficult to reconcile, which are modeled in game theory. While most applications assume uncorrelated games, a more detailed modeling is necessary to consider the correlations that influence the decisions of the players. The current theory for correlated games, however, enforces the players to obey the instructions from a third party or "correlation device" to reach equilibrium, but this cannot be achieved for all initial correlations. We extend here the existing framework of correlated games and find that there are other interesting and previously unknown Nash equilibria that make use of correlations to obtain the best payoff. This is achieved by allowing the players the freedom to follow or not to follow the suggestions of the correlation device. By assigning independent probabilities to follow every possible suggestion, the players engage in a response game that turns out to have a rich structure of Nash equilibria that goes beyond the correlated equilibrium and mixed-strategy solutions. We determine the Nash equilibria for all possible correlated Snowdrift games, which we find to be describable by Ising Models in thermal equilibrium. We believe that our approach paves the way to a study of correlations in games that uncovers the existence of interesting underlying interaction mechanisms, without compromising the independence of the players

    On the Hardness of Signaling

    Full text link
    There has been a recent surge of interest in the role of information in strategic interactions. Much of this work seeks to understand how the realized equilibrium of a game is influenced by uncertainty in the environment and the information available to players in the game. Lurking beneath this literature is a fundamental, yet largely unexplored, algorithmic question: how should a "market maker" who is privy to additional information, and equipped with a specified objective, inform the players in the game? This is an informational analogue of the mechanism design question, and views the information structure of a game as a mathematical object to be designed, rather than an exogenous variable. We initiate a complexity-theoretic examination of the design of optimal information structures in general Bayesian games, a task often referred to as signaling. We focus on one of the simplest instantiations of the signaling question: Bayesian zero-sum games, and a principal who must choose an information structure maximizing the equilibrium payoff of one of the players. In this setting, we show that optimal signaling is computationally intractable, and in some cases hard to approximate, assuming that it is hard to recover a planted clique from an Erdos-Renyi random graph. This is despite the fact that equilibria in these games are computable in polynomial time, and therefore suggests that the hardness of optimal signaling is a distinct phenomenon from the hardness of equilibrium computation. Necessitated by the non-local nature of information structures, en-route to our results we prove an "amplification lemma" for the planted clique problem which may be of independent interest

    Correlated Equilibria in Competitive Staff Selection Problem

    Full text link
    This paper deals with an extension of the concept of correlated strategies to Markov stopping games. The Nash equilibrium approach to solving nonzero-sum stopping games may give multiple solutions. An arbitrator can suggest to each player the decision to be applied at each stage based on a joint distribution over the players' decisions. This is a form of equilibrium selection. Examples of correlated equilibria in nonzero-sum games related to the staff selection competition in the case of two departments are given. Utilitarian, egalitarian, republican and libertarian concepts of correlated equilibria selection are used.Comment: The idea of this paper was presented at Game Theory and Mathematical Economics, International Conference in Memory of Jerzy Los(1920 - 1998), Warsaw, September 200
    corecore