7 research outputs found

    Codes and Pseudo-Geometric Designs from the Ternary mm-Sequences with Welch-type decimation d=2⋅3(n−1)/2+1d=2\cdot 3^{(n-1)/2}+1

    Full text link
    Pseudo-geometric designs are combinatorial designs which share the same parameters as a finite geometry design, but which are not isomorphic to that design. As far as we know, many pseudo-geometric designs have been constructed by the methods of finite geometries and combinatorics. However, none of pseudo-geometric designs with the parameters S(2,q+1,(qn−1)/(q−1))S\left (2, q+1,(q^n-1)/(q-1)\right ) is constructed by the approach of coding theory. In this paper, we use cyclic codes to construct pseudo-geometric designs. We firstly present a family of ternary cyclic codes from the mm-sequences with Welch-type decimation d=2⋅3(n−1)/2+1d=2\cdot 3^{(n-1)/2}+1, and obtain some infinite family of 2-designs and a family of Steiner systems S(2,4,(3n−1)/2)S\left (2, 4, (3^n-1)/2\right ) using these cyclic codes and their duals. Moreover, the parameters of these cyclic codes and their shortened codes are also determined. Some of those ternary codes are optimal or almost optimal. Finally, we show that one of these obtained Steiner systems is inequivalent to the point-line design of the projective space PG(n−1,3)\mathrm{PG}(n-1,3) and thus is a pseudo-geometric design.Comment: 15 pages. arXiv admin note: text overlap with arXiv:2206.15153, arXiv:2110.0388

    New affine-invariant codes from lifting

    Full text link

    Applications of finite geometries to designs and codes

    Get PDF
    This dissertation concerns the intersection of three areas of discrete mathematics: finite geometries, design theory, and coding theory. The central theme is the power of finite geometry designs, which are constructed from the points and t-dimensional subspaces of a projective or affine geometry. We use these designs to construct and analyze combinatorial objects which inherit their best properties from these geometric structures. A central question in the study of finite geometry designs is Hamada’s conjecture, which proposes that finite geometry designs are the unique designs with minimum p-rank among all designs with the same parameters. In this dissertation, we will examine several questions related to Hamada’s conjecture, including the existence of counterexamples. We will also study the applicability of certain decoding methods to known counterexamples. We begin by constructing an infinite family of counterexamples to Hamada’s conjecture. These designs are the first infinite class of counterexamples for the affine case of Hamada’s conjecture. We further demonstrate how these designs, along with the projective polarity designs of Jungnickel and Tonchev, admit majority-logic decoding schemes. The codes obtained from these polarity designs attain error-correcting performance which is, in certain cases, equal to that of the finite geometry designs from which they are derived. This further demonstrates the highly geometric structure maintained by these designs. Finite geometries also help us construct several types of quantum error-correcting codes. We use relatives of finite geometry designs to construct infinite families of q-ary quantum stabilizer codes. We also construct entanglement-assisted quantum error-correcting codes (EAQECCs) which admit a particularly efficient and effective error-correcting scheme, while also providing the first general method for constructing these quantum codes with known parameters and desirable properties. Finite geometry designs are used to give exceptional examples of these codes
    corecore