1,153 research outputs found

    A CCA2 Secure Variant of the McEliece Cryptosystem

    Get PDF
    The McEliece public-key encryption scheme has become an interesting alternative to cryptosystems based on number-theoretical problems. Differently from RSA and ElGa- mal, McEliece PKC is not known to be broken by a quantum computer. Moreover, even tough McEliece PKC has a relatively big key size, encryption and decryption operations are rather efficient. In spite of all the recent results in coding theory based cryptosystems, to the date, there are no constructions secure against chosen ciphertext attacks in the standard model - the de facto security notion for public-key cryptosystems. In this work, we show the first construction of a McEliece based public-key cryptosystem secure against chosen ciphertext attacks in the standard model. Our construction is inspired by a recently proposed technique by Rosen and Segev

    Length-based cryptanalysis: The case of Thompson's Group

    Full text link
    The length-based approach is a heuristic for solving randomly generated equations in groups which possess a reasonably behaved length function. We describe several improvements of the previously suggested length-based algorithms, that make them applicable to Thompson's group with significant success rates. In particular, this shows that the Shpilrain-Ushakov public key cryptosystem based on Thompson's group is insecure, and suggests that no practical public key cryptosystem based on this group can be secure.Comment: Final version, to appear in JM
    • …
    corecore