1,471 research outputs found

    Asymptotic aspects of Schreier graphs and Hanoi Towers groups

    Get PDF
    We present relations between growth, growth of diameters and the rate of vanishing of the spectral gap in Schreier graphs of automaton groups. In particular, we introduce a series of examples, called Hanoi Towers groups since they model the well known Hanoi Towers Problem, that illustrate some of the possible types of behavior.Comment: 5 page

    Diameters, distortion and eigenvalues

    Full text link
    We study the relation between the diameter, the first positive eigenvalue of the discrete pp-Laplacian and the â„“p\ell_p-distortion of a finite graph. We prove an inequality relating these three quantities and apply it to families of Cayley and Schreier graphs. We also show that the â„“p\ell_p-distortion of Pascal graphs, approximating the Sierpinski gasket, is bounded, which allows to obtain estimates for the convergence to zero of the spectral gap as an application of the main result.Comment: Final version, to appear in the European Journal of Combinatoric

    Optimal Vertex Cover for the Small-World Hanoi Networks

    Full text link
    The vertex-cover problem on the Hanoi networks HN3 and HN5 is analyzed with an exact renormalization group and parallel-tempering Monte Carlo simulations. The grand canonical partition function of the equivalent hard-core repulsive lattice-gas problem is recast first as an Ising-like canonical partition function, which allows for a closed set of renormalization group equations. The flow of these equations is analyzed for the limit of infinite chemical potential, at which the vertex-cover problem is attained. The relevant fixed point and its neighborhood are analyzed, and non-trivial results are obtained both, for the coverage as well as for the ground state entropy density, which indicates the complex structure of the solution space. Using special hierarchy-dependent operators in the renormalization group and Monte-Carlo simulations, structural details of optimal configurations are revealed. These studies indicate that the optimal coverages (or packings) are not related by a simple symmetry. Using a clustering analysis of the solutions obtained in the Monte Carlo simulations, a complex solution space structure is revealed for each system size. Nevertheless, in the thermodynamic limit, the solution landscape is dominated by one huge set of very similar solutions.Comment: RevTex, 24 pages; many corrections in text and figures; final version; for related information, see http://www.physics.emory.edu/faculty/boettcher
    • …
    corecore