7,680 research outputs found

    Extracting fetal heart beats from maternal abdominal recordings: Selection of the optimal principal components

    Get PDF
    This study presents a systematic comparison of different approaches to the automated selection of the principal components (PC) which optimise the detection of maternal and fetal heart beats from non-invasive maternal abdominal recordings. A public database of 75 4-channel non-invasive maternal abdominal recordings was used for training the algorithm. Four methods were developed and assessed to determine the optimal PC: (1) power spectral distribution, (2) root mean square, (3) sample entropy, and (4) QRS template. The sensitivity of the performance of the algorithm to large-amplitude noise removal (by wavelet de-noising) and maternal beat cancellation methods were also assessed. The accuracy of maternal and fetal beat detection was assessed against reference annotations and quantified using the detection accuracy score F1 [2*PPV*Se / (PPV + Se)], sensitivity (Se), and positive predictive value (PPV). The best performing implementation was assessed on a test dataset of 100 recordings and the agreement between the computed and the reference fetal heart rate (fHR) and fetal RR (fRR) time series quantified. The best performance for detecting maternal beats (F1 99.3%, Se 99.0%, PPV 99.7%) was obtained when using the QRS template method to select the optimal maternal PC and applying wavelet de-noising. The best performance for detecting fetal beats (F1 89.8%, Se 89.3%, PPV 90.5%) was obtained when the optimal fetal PC was selected using the sample entropy method and utilising a fixed-length time window for the cancellation of the maternal beats. The performance on the test dataset was 142.7 beats2/min2 for fHR and 19.9 ms for fRR, ranking respectively 14 and 17 (out of 29) when compared to the other algorithms presented at the Physionet Challenge 2013

    Quantum Generative Adversarial Networks for Learning and Loading Random Distributions

    Full text link
    Quantum algorithms have the potential to outperform their classical counterparts in a variety of tasks. The realization of the advantage often requires the ability to load classical data efficiently into quantum states. However, the best known methods require O(2n)\mathcal{O}\left(2^n\right) gates to load an exact representation of a generic data structure into an nn-qubit state. This scaling can easily predominate the complexity of a quantum algorithm and, thereby, impair potential quantum advantage. Our work presents a hybrid quantum-classical algorithm for efficient, approximate quantum state loading. More precisely, we use quantum Generative Adversarial Networks (qGANs) to facilitate efficient learning and loading of generic probability distributions -- implicitly given by data samples -- into quantum states. Through the interplay of a quantum channel, such as a variational quantum circuit, and a classical neural network, the qGAN can learn a representation of the probability distribution underlying the data samples and load it into a quantum state. The loading requires O(poly(n))\mathcal{O}\left(poly\left(n\right)\right) gates and can, thus, enable the use of potentially advantageous quantum algorithms, such as Quantum Amplitude Estimation. We implement the qGAN distribution learning and loading method with Qiskit and test it using a quantum simulation as well as actual quantum processors provided by the IBM Q Experience. Furthermore, we employ quantum simulation to demonstrate the use of the trained quantum channel in a quantum finance application.Comment: 14 pages, 13 figure

    The path inference filter: model-based low-latency map matching of probe vehicle data

    Full text link
    We consider the problem of reconstructing vehicle trajectories from sparse sequences of GPS points, for which the sampling interval is between 10 seconds and 2 minutes. We introduce a new class of algorithms, called altogether path inference filter (PIF), that maps GPS data in real time, for a variety of trade-offs and scenarios, and with a high throughput. Numerous prior approaches in map-matching can be shown to be special cases of the path inference filter presented in this article. We present an efficient procedure for automatically training the filter on new data, with or without ground truth observations. The framework is evaluated on a large San Francisco taxi dataset and is shown to improve upon the current state of the art. This filter also provides insights about driving patterns of drivers. The path inference filter has been deployed at an industrial scale inside the Mobile Millennium traffic information system, and is used to map fleets of data in San Francisco, Sacramento, Stockholm and Porto.Comment: Preprint, 23 pages and 23 figure

    Optimal estimation of entanglement

    Full text link
    Entanglement does not correspond to any observable and its evaluation always corresponds to an estimation procedure where the amount of entanglement is inferred from the measurements of one or more proper observables. Here we address optimal estimation of entanglement in the framework of local quantum estimation theory and derive the optimal observable in terms of the symmetric logarithmic derivative. We evaluate the quantum Fisher information and, in turn, the ultimate bound to precision for several families of bipartite states, either for qubits or continuous variable systems, and for different measures of entanglement. We found that for discrete variables, entanglement may be efficiently estimated when it is large, whereas the estimation of weakly entangled states is an inherently inefficient procedure. For continuous variable Gaussian systems the effectiveness of entanglement estimation strongly depends on the chosen entanglement measure. Our analysis makes an important point of principle and may be relevant in the design of quantum information protocols based on the entanglement content of quantum states.Comment: 9 pages, 2 figures, v2: minor correction

    Convergence of Smoothed Empirical Measures with Applications to Entropy Estimation

    Full text link
    This paper studies convergence of empirical measures smoothed by a Gaussian kernel. Specifically, consider approximating P∗NσP\ast\mathcal{N}_\sigma, for Nσ≜N(0,σ2Id)\mathcal{N}_\sigma\triangleq\mathcal{N}(0,\sigma^2 \mathrm{I}_d), by P^n∗Nσ\hat{P}_n\ast\mathcal{N}_\sigma, where P^n\hat{P}_n is the empirical measure, under different statistical distances. The convergence is examined in terms of the Wasserstein distance, total variation (TV), Kullback-Leibler (KL) divergence, and χ2\chi^2-divergence. We show that the approximation error under the TV distance and 1-Wasserstein distance (W1\mathsf{W}_1) converges at rate eO(d)n−12e^{O(d)}n^{-\frac{1}{2}} in remarkable contrast to a typical n−1dn^{-\frac{1}{d}} rate for unsmoothed W1\mathsf{W}_1 (and d≥3d\ge 3). For the KL divergence, squared 2-Wasserstein distance (W22\mathsf{W}_2^2), and χ2\chi^2-divergence, the convergence rate is eO(d)n−1e^{O(d)}n^{-1}, but only if PP achieves finite input-output χ2\chi^2 mutual information across the additive white Gaussian noise channel. If the latter condition is not met, the rate changes to ω(n−1)\omega(n^{-1}) for the KL divergence and W22\mathsf{W}_2^2, while the χ2\chi^2-divergence becomes infinite - a curious dichotomy. As a main application we consider estimating the differential entropy h(P∗Nσ)h(P\ast\mathcal{N}_\sigma) in the high-dimensional regime. The distribution PP is unknown but nn i.i.d samples from it are available. We first show that any good estimator of h(P∗Nσ)h(P\ast\mathcal{N}_\sigma) must have sample complexity that is exponential in dd. Using the empirical approximation results we then show that the absolute-error risk of the plug-in estimator converges at the parametric rate eO(d)n−12e^{O(d)}n^{-\frac{1}{2}}, thus establishing the minimax rate-optimality of the plug-in. Numerical results that demonstrate a significant empirical superiority of the plug-in approach to general-purpose differential entropy estimators are provided.Comment: arXiv admin note: substantial text overlap with arXiv:1810.1158
    • …
    corecore