49,237 research outputs found

    NegDL: Privacy-Preserving Deep Learning Based on Negative Database

    Full text link
    In the era of big data, deep learning has become an increasingly popular topic. It has outstanding achievements in the fields of image recognition, object detection, and natural language processing et al. The first priority of deep learning is exploiting valuable information from a large amount of data, which will inevitably induce privacy issues that are worthy of attention. Presently, several privacy-preserving deep learning methods have been proposed, but most of them suffer from a non-negligible degradation of either efficiency or accuracy. Negative database (\textit{NDB}) is a new type of data representation which can protect data privacy by storing and utilizing the complementary form of original data. In this paper, we propose a privacy-preserving deep learning method named NegDL based on \textit{NDB}. Specifically, private data are first converted to \textit{NDB} as the input of deep learning models by a generation algorithm called \textit{QK}-hidden algorithm, and then the sketches of \textit{NDB} are extracted for training and inference. We demonstrate that the computational complexity of NegDL is the same as the original deep learning model without privacy protection. Experimental results on Breast Cancer, MNIST, and CIFAR-10 benchmark datasets demonstrate that the accuracy of NegDL could be comparable to the original deep learning model in most cases, and it performs better than the method based on differential privacy

    FedPNN: One-shot Federated Classification via Evolving Clustering Method and Probabilistic Neural Network hybrid

    Full text link
    Protecting data privacy is paramount in the fields such as finance, banking, and healthcare. Federated Learning (FL) has attracted widespread attention due to its decentralized, distributed training and the ability to protect the privacy while obtaining a global shared model. However, FL presents challenges such as communication overhead, and limited resource capability. This motivated us to propose a two-stage federated learning approach toward the objective of privacy protection, which is a first-of-its-kind study as follows: (i) During the first stage, the synthetic dataset is generated by employing two different distributions as noise to the vanilla conditional tabular generative adversarial neural network (CTGAN) resulting in modified CTGAN, and (ii) In the second stage, the Federated Probabilistic Neural Network (FedPNN) is developed and employed for building globally shared classification model. We also employed synthetic dataset metrics to check the quality of the generated synthetic dataset. Further, we proposed a meta-clustering algorithm whereby the cluster centers obtained from the clients are clustered at the server for training the global model. Despite PNN being a one-pass learning classifier, its complexity depends on the training data size. Therefore, we employed a modified evolving clustering method (ECM), another one-pass algorithm to cluster the training data thereby increasing the speed further. Moreover, we conducted sensitivity analysis by varying Dthr, a hyperparameter of ECM at the server and client, one at a time. The effectiveness of our approach is validated on four finance and medical datasets.Comment: 27 pages, 13 figures, 7 table
    • …
    corecore