1,577 research outputs found

    Intuitionistic Completeness of First-Order Logic

    Full text link
    We establish completeness for intuitionistic first-order logic, iFOL, showing that is a formula is provable if and only if it is uniformly valid under the Brouwer Heyting Kolmogorov (BHK) semantics, the intended semantics of iFOL. Our proof is intuitionistic and provides an effective procedure Prf that converts uniform evidence into a formal first-order proof. We have implemented Prf . Uniform validity is defined using the intersection operator as a universal quantifier over the domain of discourse and atomic predicates. Formulas of iFOL that are uniformly valid are also intuitionistically valid, but not conversely. Our strongest result requires the Fan Theorem; it can also be proved classically by showing that Prf terminates using K¨onig’s Theorem. The fundamental idea behind our completeness theorem is that a single evidence term evd witnesses the uniform validity of a minimal logic formula F. Finding even one uniform realizer guarantees validity because Prf (F, evd) builds a first-order proof of F, establishing its uniform validity and providing a purely logical normalized realizer. We establish completeness for iFOL as follows. Friedman showed that iFOL can be embedded in minimal logic (mFOL). By his transformation, mapping formula A to F r(A). If A is uniformly valid, then so is F r(A), and by our Basic Completeness result, we can find a proof of F r(A) in minimal logic. Then we prove A from F r(A) in intuitionistic logic by a proof procedure fixed in advance. Our result resolves an open question posed by Beth in 1947

    Almost structural completeness; an algebraic approach

    Full text link
    A deductive system is structurally complete if its admissible inference rules are derivable. For several important systems, like modal logic S5, failure of structural completeness is caused only by the underivability of passive rules, i.e. rules that can not be applied to theorems of the system. Neglecting passive rules leads to the notion of almost structural completeness, that means, derivablity of admissible non-passive rules. Almost structural completeness for quasivarieties and varieties of general algebras is investigated here by purely algebraic means. The results apply to all algebraizable deductive systems. Firstly, various characterizations of almost structurally complete quasivarieties are presented. Two of them are general: expressed with finitely presented algebras, and with subdirectly irreducible algebras. One is restricted to quasivarieties with finite model property and equationally definable principal relative congruences, where the condition is verifiable on finite subdirectly irreducible algebras. Secondly, examples of almost structurally complete varieties are provided Particular emphasis is put on varieties of closure algebras, that are known to constitute adequate semantics for normal extensions of S4 modal logic. A certain infinite family of such almost structurally complete, but not structurally complete, varieties is constructed. Every variety from this family has a finitely presented unifiable algebra which does not embed into any free algebra for this variety. Hence unification in it is not unitary. This shows that almost structural completeness is strictly weaker than projective unification for varieties of closure algebras

    Semantic A-translation and Super-consistency entail Classical Cut Elimination

    Get PDF
    We show that if a theory R defined by a rewrite system is super-consistent, the classical sequent calculus modulo R enjoys the cut elimination property, which was an open question. For such theories it was already known that proofs strongly normalize in natural deduction modulo R, and that cut elimination holds in the intuitionistic sequent calculus modulo R. We first define a syntactic and a semantic version of Friedman's A-translation, showing that it preserves the structure of pseudo-Heyting algebra, our semantic framework. Then we relate the interpretation of a theory in the A-translated algebra and its A-translation in the original algebra. This allows to show the stability of the super-consistency criterion and the cut elimination theorem

    Information completeness in Nelson algebras of rough sets induced by quasiorders

    Full text link
    In this paper, we give an algebraic completeness theorem for constructive logic with strong negation in terms of finite rough set-based Nelson algebras determined by quasiorders. We show how for a quasiorder RR, its rough set-based Nelson algebra can be obtained by applying the well-known construction by Sendlewski. We prove that if the set of all RR-closed elements, which may be viewed as the set of completely defined objects, is cofinal, then the rough set-based Nelson algebra determined by a quasiorder forms an effective lattice, that is, an algebraic model of the logic E0E_0, which is characterised by a modal operator grasping the notion of "to be classically valid". We present a necessary and sufficient condition under which a Nelson algebra is isomorphic to a rough set-based effective lattice determined by a quasiorder.Comment: 15 page
    corecore