8,279 research outputs found

    Fast global convergence of gradient methods for high-dimensional statistical recovery

    Full text link
    Many statistical MM-estimators are based on convex optimization problems formed by the combination of a data-dependent loss function with a norm-based regularizer. We analyze the convergence rates of projected gradient and composite gradient methods for solving such problems, working within a high-dimensional framework that allows the data dimension \pdim to grow with (and possibly exceed) the sample size \numobs. This high-dimensional structure precludes the usual global assumptions---namely, strong convexity and smoothness conditions---that underlie much of classical optimization analysis. We define appropriately restricted versions of these conditions, and show that they are satisfied with high probability for various statistical models. Under these conditions, our theory guarantees that projected gradient descent has a globally geometric rate of convergence up to the \emph{statistical precision} of the model, meaning the typical distance between the true unknown parameter θ∗\theta^* and an optimal solution θ^\hat{\theta}. This result is substantially sharper than previous convergence results, which yielded sublinear convergence, or linear convergence only up to the noise level. Our analysis applies to a wide range of MM-estimators and statistical models, including sparse linear regression using Lasso (ℓ1\ell_1-regularized regression); group Lasso for block sparsity; log-linear models with regularization; low-rank matrix recovery using nuclear norm regularization; and matrix decomposition. Overall, our analysis reveals interesting connections between statistical precision and computational efficiency in high-dimensional estimation

    Functional Regression

    Full text link
    Functional data analysis (FDA) involves the analysis of data whose ideal units of observation are functions defined on some continuous domain, and the observed data consist of a sample of functions taken from some population, sampled on a discrete grid. Ramsay and Silverman's 1997 textbook sparked the development of this field, which has accelerated in the past 10 years to become one of the fastest growing areas of statistics, fueled by the growing number of applications yielding this type of data. One unique characteristic of FDA is the need to combine information both across and within functions, which Ramsay and Silverman called replication and regularization, respectively. This article will focus on functional regression, the area of FDA that has received the most attention in applications and methodological development. First will be an introduction to basis functions, key building blocks for regularization in functional regression methods, followed by an overview of functional regression methods, split into three types: [1] functional predictor regression (scalar-on-function), [2] functional response regression (function-on-scalar) and [3] function-on-function regression. For each, the role of replication and regularization will be discussed and the methodological development described in a roughly chronological manner, at times deviating from the historical timeline to group together similar methods. The primary focus is on modeling and methodology, highlighting the modeling structures that have been developed and the various regularization approaches employed. At the end is a brief discussion describing potential areas of future development in this field
    • …
    corecore