6 research outputs found

    An alternate proof of Payan's theorem on cubelike graphs

    Full text link
    A cubelike graph is a Cayley graph on the product Z2××Z2\mathbb{Z}_2\times\cdots\times\mathbb{Z}_2 of the integers modulo 22 with itself finitely many times. In 1992, Payan proved that no cubelike graph can have chromatic number 33. The authors of the present paper previously developed a general matrix method for studying chromatic numbers of Cayley graphs on abelian groups. In this note, we apply this method of Heuberger matrices to give an alternate proof of Payan's theorem.Comment: 4 page

    Chromatic numbers of Cayley graphs of abelian groups: A matrix method

    Full text link
    In this paper, we take a modest first step towards a systematic study of chromatic numbers of Cayley graphs on abelian groups. We lose little when we consider these graphs only when they are connected and of finite degree. As in the work of Heuberger and others, in such cases the graph can be represented by an m×rm\times r integer matrix, where we call mm the dimension and rr the rank. Adding or subtracting rows produces a graph homomorphism to a graph with a matrix of smaller dimension, thereby giving an upper bound on the chromatic number of the original graph. In this article we develop the foundations of this method. In a series of follow-up articles using this method, we completely determine the chromatic number in cases with small dimension and rank; prove a generalization of Zhu's theorem on the chromatic number of 66-valent integer distance graphs; and provide an alternate proof of Payan's theorem that a cube-like graph cannot have chromatic number 3.Comment: 17 page

    The chromatic number of the square of the 8-cube

    No full text
    A cube-like graph is a Cayley graph for the elementary abelian group of order 2n. In studies of the chromatic number of cube-like graphs, the kth power of the n-dimensional hypercube, Qn k, is frequently considered. This coloring problem can be considered in the framework of coding theory, as the graph Qn k can be constructed with one vertex for each binary word of length n and edges between vertices exactly when the Hamming distance between the corresponding words is at most k. Consequently, a proper coloring of Qn k corresponds to a partition of the n-dimensional binary Hamming space into codes with minimum distance at least k + 1. The smallest open case, the chromatic number of Q8 2, is here settled by finding a 13-coloring. Such 13-colorings with specific symmetries are further classified.Peer reviewe

    The chromatic number of the square of the 88-cube

    No full text

    Laskennallisia mentelmiä koodien luokitteluun

    No full text
    One of the fundamental problems in digital communications and data storage systems is finding good coding methods that allow transmitting or storing information efficiently in situations where errors may occur. Many problems in coding theory can be described in terms of combinatorial objects. These problems can then be solved using theoretical and computational methods.  The focus of this thesis is developing algorithms for classification and existence problems involving codes and covering arrays, which are mathematically related to codes and used for example in designing tests for systems such as software. The algorithms make use of common techniques for exhaustive generation and isomorph rejection.  The new methods are applied to three problems. First, all maximum distance separable (MDS) codes over alphabets of size at most 8 with minimum distance at least 3 are classified. Three new equivalence classes of perfect one-error-correcting 8-ary MDS codes are found. Second, some small covering arrays of strength 2 are classified to assist studying the structure of such arrays. These results also settle the size of an optimal covering array in some cases. Third, the chromatic number of the square of the 8-cube, a problem that has resisted a solution since the first attempts in early 1990s, is solved using a coding-theoretical approach and the method of prescribing symmetries.Digitaalisessa viestinnässä ja tiedontallennusjärjestelmissä keskeinen ongelma on löytää hyviä koodausmenetelmiä, joilla voidaan siirtää tai tallentaa tietoa tehokkaasti tilanteissa, joissa voi esiintyä virheitä. Monet koodausteorian ongelmat voidaan esittää kombinatoristen objektien avulla, ja näitä ongelmia voidaan ratkoa teoreettisilla ja laskennallisilla menetelmillä.  Tässä työssä kehitetään algoritmeja koodien ja peittotaulukoiden luokittelu- ja olemassaolo-ongelmiin. Peittotaulukot muistuttavat matemaattisesti koodeja, ja niitä käytetään esimerkiksi ohjelmistojen testeissä. Algoritmit käyttävät yleisiä tekniikoita kattavaan hakuun ja isomorfisten objektien karsimiseen.  Kehitettyjä menetelmiä sovelletaan työssä kolmeen ongelmaan. Ensiksi luokitellaan kaikki MDS-koodit (engl. maximum distance separable), joiden aakkoston koko on enintään 8 ja minimietäisyys vähintään 3. Luokittelussa löydetään kolme uutta ekvivalenssiluokkaa täydellisiä yhden virheen korjaavia MDS-koodeja, joiden aakkoston koko on 8. Toiseksi luokitellaan pieniä peittotaulukoita. Luokittelun tarkoitus on auttaa niiden rakenteen tutkimisessa, ja saadut tulokset myös ratkaisevat optimaalisen peittotaulukon koon joissakin tapauksissa. Kolmantena ratkaistaan 8-ulotteisen hyperkuution neliön kromaattinen luku. 1990-luvun alkupuolelta alkaneista yrityksistä huolimatta tähän ongelmaan ei ole aiemmin löydetty ratkaisua. Tässä työssä ongelma ratkaistaan lähestymällä sitä koodausteorian näkökulmasta ja käyttämällä menetelmää, jossa kiinnitetään haettavan rakenteen symmetrioita
    corecore