1,723 research outputs found

    Ramsey-nice families of graphs

    Get PDF
    For a finite family F\mathcal{F} of fixed graphs let Rk(F)R_k(\mathcal{F}) be the smallest integer nn for which every kk-coloring of the edges of the complete graph KnK_n yields a monochromatic copy of some F∈FF\in\mathcal{F}. We say that F\mathcal{F} is kk-nice if for every graph GG with χ(G)=Rk(F)\chi(G)=R_k(\mathcal{F}) and for every kk-coloring of E(G)E(G) there exists a monochromatic copy of some F∈FF\in\mathcal{F}. It is easy to see that if F\mathcal{F} contains no forest, then it is not kk-nice for any kk. It seems plausible to conjecture that a (weak) converse holds, namely, for any finite family of graphs F\mathcal{F} that contains at least one forest, and for all k≥k0(F)k\geq k_0(\mathcal{F}) (or at least for infinitely many values of kk), F\mathcal{F} is kk-nice. We prove several (modest) results in support of this conjecture, showing, in particular, that it holds for each of the three families consisting of two connected graphs with 3 edges each and observing that it holds for any family F\mathcal{F} containing a forest with at most 2 edges. We also study some related problems and disprove a conjecture by Aharoni, Charbit and Howard regarding the size of matchings in regular 3-partite 3-uniform hypergraphs.Comment: 20 pages, 2 figure

    Degree Sequence Index Strategy

    Full text link
    We introduce a procedure, called the Degree Sequence Index Strategy (DSI), by which to bound graph invariants by certain indices in the ordered degree sequence. As an illustration of the DSI strategy, we show how it can be used to give new upper and lower bounds on the kk-independence and the kk-domination numbers. These include, among other things, a double generalization of the annihilation number, a recently introduced upper bound on the independence number. Next, we use the DSI strategy in conjunction with planarity, to generalize some results of Caro and Roddity about independence number in planar graphs. Lastly, for claw-free and K1,rK_{1,r}-free graphs, we use DSI to generalize some results of Faudree, Gould, Jacobson, Lesniak and Lindquester

    On the strong chromatic number of random graphs

    Full text link
    Let G be a graph with n vertices, and let k be an integer dividing n. G is said to be strongly k-colorable if for every partition of V(G) into disjoint sets V_1 \cup ... \cup V_r, all of size exactly k, there exists a proper vertex k-coloring of G with each color appearing exactly once in each V_i. In the case when k does not divide n, G is defined to be strongly k-colorable if the graph obtained by adding k \lceil n/k \rceil - n isolated vertices is strongly k-colorable. The strong chromatic number of G is the minimum k for which G is strongly k-colorable. In this paper, we study the behavior of this parameter for the random graph G(n, p). In the dense case when p >> n^{-1/3}, we prove that the strong chromatic number is a.s. concentrated on one value \Delta+1, where \Delta is the maximum degree of the graph. We also obtain several weaker results for sparse random graphs.Comment: 16 page
    • …
    corecore