3,565 research outputs found

    Broadcast Channels with Cooperating Decoders

    Full text link
    We consider the problem of communicating over the general discrete memoryless broadcast channel (BC) with partially cooperating receivers. In our setup, receivers are able to exchange messages over noiseless conference links of finite capacities, prior to decoding the messages sent from the transmitter. In this paper we formulate the general problem of broadcast with cooperation. We first find the capacity region for the case where the BC is physically degraded. Then, we give achievability results for the general broadcast channel, for both the two independent messages case and the single common message case.Comment: Final version, to appear in the IEEE Transactions on Information Theory -- contains (very) minor changes based on the last round of review

    Secrecy Capacity of a Class of Broadcast Channels with an Eavesdropper

    Full text link
    We study the security of communication between a single transmitter and multiple receivers in a broadcast channel in the presence of an eavesdropper. We consider several special classes of channels. As the first model, we consider the degraded multi-receiver wiretap channel where the legitimate receivers exhibit a degradedness order while the eavesdropper is more noisy with respect to all legitimate receivers. We establish the secrecy capacity region of this channel model. Secondly, we consider the parallel multi-receiver wiretap channel with a less noisiness order in each sub-channel, where this order is not necessarily the same for all sub-channels. We establish the common message secrecy capacity and sum secrecy capacity of this channel. Thirdly, we study a special class of degraded parallel multi-receiver wiretap channels and provide a stronger result. In particular, we study the case with two sub-channels two users and one eavesdropper, where there is a degradedness order in each sub-channel such that in the first (resp. second) sub-channel the second (resp. first) receiver is degraded with respect to the first (resp. second) receiver, while the eavesdropper is degraded with respect to both legitimate receivers in both sub-channels. We determine the secrecy capacity region of this channel. Finally, we focus on a variant of this previous channel model where the transmitter can use only one of the sub-channels at any time. We characterize the secrecy capacity region of this channel as well.Comment: Submitted to EURASIP Journal on Wireless Communications and Networking (Special Issue on Wireless Physical Layer Security

    A Unified Scheme for Two-Receiver Broadcast Channels with Receiver Message Side Information

    Full text link
    This paper investigates the capacity regions of two-receiver broadcast channels where each receiver (i) has both common and private-message requests, and (ii) knows part of the private message requested by the other receiver as side information. We first propose a transmission scheme and derive an inner bound for the two-receiver memoryless broadcast channel. We next prove that this inner bound is tight for the deterministic channel and the more capable channel, thereby establishing their capacity regions. We show that this inner bound is also tight for all classes of two-receiver broadcast channels whose capacity regions were known prior to this work. Our proposed scheme is consequently a unified capacity-achieving scheme for these classes of broadcast channels.Comment: accepted and to be presented at the 2015 IEEE International Symposium on Information Theory (ISIT 2015

    A New Capacity Result for the Z-Gaussian Cognitive Interference Channel

    Full text link
    This work proposes a novel outer bound for the Gaussian cognitive interference channel in strong interference at the primary receiver based on the capacity of a multi-antenna broadcast channel with degraded message set. It then shows that for the Z-channel, i.e., when the secondary receiver experiences no interference and the primary receiver experiences strong interference, the proposed outer bound not only is the tightest among known bounds but is actually achievable for sufficiently strong interference. The latter is a novel capacity result that from numerical evaluations appears to be generalizable to a larger (i.e., non-Z) class of Gaussian channels
    • …
    corecore