10 research outputs found

    The average number of spanning trees in sparse graphs with given degrees

    Full text link
    We give an asymptotic expression for the expected number of spanning trees in a random graph with a given degree sequence d=(d1,…,dn), provided that the number of edges is at least n+12dmax4, where dmax is the maximum degree. A key part of our argument involves establishing a concentration result for a certain family of functions over random trees with given degrees, using Prüfer codes

    Proof of a conjecture on induced subgraphs of Ramsey graphs

    Full text link
    An n-vertex graph is called C-Ramsey if it has no clique or independent set of size C log n. All known constructions of Ramsey graphs involve randomness in an essential way, and there is an ongoing line of research towards showing that in fact all Ramsey graphs must obey certain "richness" properties characteristic of random graphs. More than 25 years ago, Erd\H{o}s, Faudree and S\'{o}s conjectured that in any C-Ramsey graph there are Ω(n5/2)\Omega\left(n^{5/2}\right) induced subgraphs, no pair of which have the same numbers of vertices and edges. Improving on earlier results of Alon, Balogh, Kostochka and Samotij, in this paper we prove this conjecture

    The average number of spanning trees in sparse graphs with given degrees

    No full text
    We give an asymptotic expression for the expected number of spanning trees in a random graph with a given degree sequence d = (d₁, . . . , dn), provided that the number of edges is at least n + 1/2d⁴max, where dmax is the maximum degree. A key part of our argument involves establishing a concentration result for a certain family of functions over random trees with given degrees, using Prüfer codes

    Dirac-type theorems in random hypergraphs

    Full text link
    For positive integers d<kd<k and nn divisible by kk, let md(k,n)m_{d}(k,n) be the minimum dd-degree ensuring the existence of a perfect matching in a kk-uniform hypergraph. In the graph case (where k=2k=2), a classical theorem of Dirac says that m1(2,n)=n/2m_{1}(2,n)=\lceil n/2\rceil. However, in general, our understanding of the values of md(k,n)m_{d}(k,n) is still very limited, and it is an active topic of research to determine or approximate these values. In this paper we prove a "transference" theorem for Dirac-type results relative to random hypergraphs. Specifically, for any d0d0 and any "not too small" pp, we prove that a random kk-uniform hypergraph GG with nn vertices and edge probability pp typically has the property that every spanning subgraph of GG with minimum degree at least (1+ε)md(k,n)p(1+\varepsilon)m_{d}(k,n)p has a perfect matching. One interesting aspect of our proof is a "non-constructive" application of the absorbing method, which allows us to prove a bound in terms of md(k,n)m_{d}(k,n) without actually knowing its value
    corecore