1,189,180 research outputs found

    Combining Stereo Disparity and Optical Flow for Basic Scene Flow

    Full text link
    Scene flow is a description of real world motion in 3D that contains more information than optical flow. Because of its complexity there exists no applicable variant for real-time scene flow estimation in an automotive or commercial vehicle context that is sufficiently robust and accurate. Therefore, many applications estimate the 2D optical flow instead. In this paper, we examine the combination of top-performing state-of-the-art optical flow and stereo disparity algorithms in order to achieve a basic scene flow. On the public KITTI Scene Flow Benchmark we demonstrate the reasonable accuracy of the combination approach and show its speed in computation.Comment: Commercial Vehicle Technology Symposium (CVTS), 201

    Cross Pixel Optical Flow Similarity for Self-Supervised Learning

    Full text link
    We propose a novel method for learning convolutional neural image representations without manual supervision. We use motion cues in the form of optical flow, to supervise representations of static images. The obvious approach of training a network to predict flow from a single image can be needlessly difficult due to intrinsic ambiguities in this prediction task. We instead propose a much simpler learning goal: embed pixels such that the similarity between their embeddings matches that between their optical flow vectors. At test time, the learned deep network can be used without access to video or flow information and transferred to tasks such as image classification, detection, and segmentation. Our method, which significantly simplifies previous attempts at using motion for self-supervision, achieves state-of-the-art results in self-supervision using motion cues, competitive results for self-supervision in general, and is overall state of the art in self-supervised pretraining for semantic image segmentation, as demonstrated on standard benchmarks

    Anisotropic flow in 4.2A GeV/c C+Ta collisions

    Full text link
    Anisotropic flow of protons and negative pions in 4.2A GeV/c C+Ta collisions is studied using the Fourier analysis of azimuthal distributions. The protons exhibit pronounced directed flow. Directed flow of pions is positive in the entire rapidity interval and indicates that the pions are preferentially emitted in the reaction plane from the target to the projectile. The elliptic flow of protons and negative pions is close to zero. Comparison with the quark-gluon-string model (QGSM) and relativistic transport model (ART 1.0) show that they both yield a flow signature similar to the experimental data.Comment: 4 pages, 3 figures, Accepted for publication in Phys. Rev.

    Critical flow – towards a construction flow theory

    Get PDF
    This paper introduces the concept of Construction Physics as a more comprehensive way of understanding the construction process from a flow perspective. It establishes a preliminary definition of the term and investigates briefly the present knowledge, flow models and methods for their management. From this it argues that the state of the art does not fully cover the whole process and proposes a holistic view of the flow of all prerequisites feeding the process. It introduces the key term Critical Flow and concludes by recommending areas that should be investigated as a joint IGLC research, development and testing programme

    Directed flow of neutral strange particles at AGS

    Get PDF
    Directed flow of neutral strange particles in heavy ion collisions at AGS is studied in the ART transport model. Using a lambda mean-field potential which is 2/3 of that for a nucleon as predicted by the constituent quark model, lambdas are found to flow with protons but with a smaller flow parameter as observed in experiments. For kaons, their repulsive potential, which is calculated from the impulse approximation using the measured kaon-nucleon scattering length, leads to a smaller anti-flow than that shown in the preliminary E895 data. Implications of this discrepancy are discussed.Comment: 6 pages, 2 figure

    Pion flow and antiflow in relativistic heavy-ion collisions

    Get PDF
    Within the framework of a relativistic transport model (ART) for heavy-ion collisions at AGS energies, we study the transverse flow of pions with respect to that of nucleons using two complementary approaches. It is found that in central collisions pions develop a weak flow as a result of the flow of baryon resonances from which they are produced. On the other hand, they have a weak antiflow in peripheral collisions due to the shadowing of spectators. Furthermore, it is shown that both pion flow and antiflow are dominated by those with large transverse momenta.Comment: Phys. Rev. C, Rapid communication, in press. Figures are available from the authors upon reques

    Excitation function of nucleon and pion elliptic flow in relativistic heavy-ion collisions

    Get PDF
    Within a relativistic transport (ART) model for heavy-ion collisions, we show that the recently observed characteristic change from out-of-plane to in-plane elliptic flow of protons in mid-central Au+Au collisions as the incident energy increases is consistent with the calculated results using a stiff nuclear equation of state (K=380 MeV). We have also studied the elliptic flow of pions and the transverse momentum dependence of both the nucleon and pion elliptic flow in order to gain further insight about the collision dynamics.Comment: 8 pages, 2 figure
    • 

    corecore