25 research outputs found

    Survey on Computer Worms

    Get PDF
    Cyber Security is an important aspect in the field of information technology. Either it is often neglected or given a lesser priority .One of the biggest challenges that we face today is to secure information. The first thing that comes to our mind whenever we think about cyber security is ‘cyber crimes’, which are increasing at a very fast pace. Governments of countries, agencies and companies are taking crucial measures in order to prevent cybercrimes. Despite taking measures cyber security is still a very big concern. This paper mainly lays emphasis on the definition of worms, difference between worms and viruses, behavioural patterns of worms, major categories of worms, aspects of designing of worms, life cycle of worms, history and timeline of worms and a case study of Stuxnet

    Containment of network worms via per-process rate-limiting

    Full text link
    Network worms pose a serious threat to the Internet infrastructure as well as end-users. Various techniques have been proposed for de-tection of, and response against worms. A frequently-used and au-tomated response mechanism is to rate-limit outbound worm traffic while maintaining the operation of legitimate applications, offering a gentler alternative to the usual detect-and-block approach. How-ever, most rate-limiting schemes to date only focus on host-level network activities and impose a single threshold on the entire host, failing to (i) accommodate network-intensive applications and (ii) effectively contain network worms at the same time. To allevi-ate these limitations, we propose a per-process-based containment framework in each host that monitors the fine-grained runtime be-havior of each process and accordingly assigns the process a sus-picion level generated by a machine-learning algorithm. We have also developed a heuristic to optimally map each suspicion level to the rate-limiting threshold. The framework is shown to be effective in containing network worms and allowing the traffic of legitimate programs, achieving lower false-alarm rates

    Study of Botnets and Their Threats to Internet Security

    Get PDF
    Among all media of communications, Internet is most vulnerable to attacks owing to its public nature and virtually without centralized control. With the growing financial dealings and dependence of businesses on Internet, these attacks have even more increased. Whereas previously hackers would satisfy themselves by breaking into someone’s system, in today\u27s world hackers\u27 work under an organized crime plan to obtain illicit financial gains. Various attacks than include spamming, phishing, click fraud, distributed denial of services, hosting illegal material, key logging, etc. are being carried out by hackers using botnets. In this paper a detailed study of botnets vis-a-vis their creation, propagation, command and control techniques, communication protocols and relay mechanism is presented. The aim of this paper is to gain an insight of security threats that users of Internet are facing from hackers by the use of malicious botnets

    On Detection of Current and Next-Generation Botnets.

    Full text link
    Botnets are one of the most serious security threats to the Internet and its end users. A botnet consists of compromised computers that are remotely coordinated by a botmaster under a Command and Control (C&C) infrastructure. Driven by financial incentives, botmasters leverage botnets to conduct various cybercrimes such as spamming, phishing, identity theft and Distributed-Denial-of-Service (DDoS) attacks. There are three main challenges facing botnet detection. First, code obfuscation is widely employed by current botnets, so signature-based detection is insufficient. Second, the C&C infrastructure of botnets has evolved rapidly. Any detection solution targeting one botnet instance can hardly keep up with this change. Third, the proliferation of powerful smartphones presents a new platform for future botnets. Defense techniques designed for existing botnets may be outsmarted when botnets invade smartphones. Recognizing these challenges, this dissertation proposes behavior-based botnet detection solutions at three different levels---the end host, the edge network and the Internet infrastructure---from a small scale to a large scale, and investigates the next-generation botnet targeting smartphones. It (1) addresses the problem of botnet seeding by devising a per-process containment scheme for end-host systems; (2) proposes a hybrid botnet detection framework for edge networks utilizing combined host- and network-level information; (3) explores the structural properties of botnet topologies and measures network components' capabilities of large-scale botnet detection at the Internet infrastructure level; and (4) presents a proof-of-concept mobile botnet employing SMS messages as the C&C and P2P as the topology to facilitate future research on countermeasures against next-generation botnets. The dissertation makes three primary contributions. First, the detection solutions proposed utilize intrinsic and fundamental behavior of botnets and are immune to malware obfuscation and traffic encryption. Second, the solutions are general enough to identify different types of botnets, not a specific botnet instance. They can also be extended to counter next-generation botnet threats. Third, the detection solutions function at multiple levels to meet various detection needs. They each take a different perspective but are highly complementary to each other, forming an integrated botnet detection framework.Ph.D.Computer Science & EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/91382/1/gracez_1.pd

    The Pan American (2005-09-01)

    Get PDF
    https://scholarworks.utrgv.edu/panamerican/1446/thumbnail.jp

    Security of smart manufacturing systems

    Get PDF
    A revolution in manufacturing systems is underway: substantial recent investment has been directed towards the development of smart manufacturing systems that are able to respond in real time to changes in customer demands, as well as the conditions in the supply chain and in the factory itself. Smart manufacturing is a key component of the broader thrust towards Industry 4.0, and relies on the creation of a bridge between digital and physical environments through Internet of Things (IoT) technologies, coupled with enhancements to those digital environments through greater use of cloud systems, data analytics and machine learning. Whilst these individual technologies have been in development for some time, their integration with industrial systems leads to new challenges as well as potential benefits. In this paper, we explore the challenges faced by those wishing to secure smart manufacturing systems. Lessons from history suggest that where an attempt has been made to retrofit security on systems for which the primary driver was the development of functionality, there are inevitable and costly breaches. Indeed, today's manufacturing systems have started to experience this over the past few years; however, the integration of complex smart manufacturing technologies massively increases the scope for attack from adversaries aiming at industrial espionage and sabotage. The potential outcome of these attacks ranges from economic damage and lost production, through injury and loss of life, to catastrophic nation-wide effects. In this paper, we discuss the security of existing industrial and manufacturing systems, existing vulnerabilities, potential future cyber-attacks, the weaknesses of existing measures, the levels of awareness and preparedness for future security challenges, and why security must play a key role underpinning the development of future smart manufacturing systems

    Tracking and Mitigation of Malicious Remote Control Networks

    Full text link
    Attacks against end-users are one of the negative side effects of today’s networks. The goal of the attacker is to compromise the victim’s machine and obtain control over it. This machine is then used to carry out denial-of-service attacks, to send out spam mails, or for other nefarious purposes. From an attacker’s point of view, this kind of attack is even more efficient if she manages to compromise a large number of machines in parallel. In order to control all these machines, she establishes a "malicious remote control network", i.e., a mechanism that enables an attacker the control over a large number of compromised machines for illicit activities. The most common type of these networks observed so far are so called "botnets". Since these networks are one of the main factors behind current abuses on the Internet, we need to find novel approaches to stop them in an automated and efficient way. In this thesis we focus on this open problem and propose a general root cause methodology to stop malicious remote control networks. The basic idea of our method consists of three steps. In the first step, we use "honeypots" to collect information. A honeypot is an information system resource whose value lies in unauthorized or illicit use of that resource. This technique enables us to study current attacks on the Internet and we can for example capture samples of autonomous spreading malware ("malicious software") in an automated way. We analyze the collected data to extract information about the remote control mechanism in an automated fashion. For example, we utilize an automated binary analysis tool to find the Command & Control (C&C) server that is used to send commands to the infected machines. In the second step, we use the extracted information to infiltrate the malicious remote control networks. This can for example be implemented by impersonating as a bot and infiltrating the remote control channel. Finally, in the third step we use the information collected during the infiltration phase to mitigate the network, e.g., by shutting down the remote control channel such that the attacker cannot send commands to the compromised machines. In this thesis we show the practical feasibility of this method. We examine different kinds of malicious remote control networks and discuss how we can track all of them in an automated way. As a first example, we study botnets that use a central C&C server: We illustrate how the three steps can be implemented in practice and present empirical measurement results obtained on the Internet. Second, we investigate botnets that use a peer-to-peer based communication channel. Mitigating these botnets is harder since no central C&C server exists which could be taken offline. Nevertheless, our methodology can also be applied to this kind of networks and we present empirical measurement results substantiating our method. Third, we study fast-flux service networks. The idea behind these networks is that the attacker does not directly abuse the compromised machines, but uses them to establish a proxy network on top of these machines to enable a robust hosting infrastructure. Our method can be applied to this novel kind of malicious remote control networks and we present empirical results supporting this claim. We anticipate that the methodology proposed in this thesis can also be used to track and mitigate other kinds of malicious remote control networks

    Communication Strategies as a Basis for Crisis Management Including Use of the Internet as a Delivery Platform

    Get PDF
    ABSTRACT Eighty per cent of small companies without a comprehensive crisis plan vanish within two years of suffering a major disaster—a remarkable and ominous statistic. Crises are occurring more often in all organizations, and when they occur, they are leaving a wake of financial, operational, and reputational damage. Why this trend, now? There are five important reasons: 1) a more volatile workplace involving financial, legal, or management issues within the organization; 2) an extreme production mentality often obscuring the conditions under which crises might otherwise be recognized, addressed, or mitigated; 3) enhanced technological platforms for information delivery, such as the Internet, generating a revolving information door thus promoting organizational stress and crisis; 4) fast-paced and invasive journalism practices that eliminate invisibility for decisionmaking or reaction; and, 5) lack of strategic planning for crisis. There is an increasing body of evidence suggesting that crises in an organizational environment, whether created by act-of-God or manmade circumstances, have defined and predictable characteristics often relating to communication problems in the discourse community. It is also evident that solutions exist to reduce the incidence and the intensity of crisis within this discourse community. Approaches include organizational vulnerability assessments, messaging strategies, forensic media tactics, and dedicated efforts to build relationships with important stakeholders. Each of these has as its foundation a vigorous strategic communication plan. Crisis plans are necessary in today’s business environment, and effective communication is an essential element of any crisis plan. This dissertation will focus on communication methodology as a means of crisis avoidance and crisis mitigation

    A framework for the application of network telescope sensors in a global IP network

    Get PDF
    The use of Network Telescope systems has become increasingly popular amongst security researchers in recent years. This study provides a framework for the utilisation of this data. The research is based on a primary dataset of 40 million events spanning 50 months collected using a small (/24) passive network telescope located in African IP space. This research presents a number of differing ways in which the data can be analysed ranging from low level protocol based analysis to higher level analysis at the geopolitical and network topology level. Anomalous traffic and illustrative anecdotes are explored in detail and highlighted. A discussion relating to bogon traffic observed is also presented. Two novel visualisation tools are presented, which were developed to aid in the analysis of large network telescope datasets. The first is a three-dimensional visualisation tool which allows for live, near-realtime analysis, and the second is a two-dimensional fractal based plotting scheme which allows for plots of the entire IPv4 address space to be produced, and manipulated. Using the techniques and tools developed for the analysis of this dataset, a detailed analysis of traffic recorded as destined for port 445/tcp is presented. This includes the evaluation of traffic surrounding the outbreak of the Conficker worm in November 2008. A number of metrics relating to the description and quantification of network telescope configuration and the resultant traffic captures are described, the use of which it is hoped will facilitate greater and easier collaboration among researchers utilising this network security technology. The research concludes with suggestions relating to other applications of the data and intelligence that can be extracted from network telescopes, and their use as part of an organisation’s integrated network security system
    corecore