24 research outputs found

    Prototype system for synergistic data display

    Get PDF
    Journal ArticleMultimodal interfaces have been shown to increase user performance for a variety of tasks. We have been investigating the synergistic benefits of haptic scientific visualization using an integrated, semi-immersive virtual environment. The Visual Haptic Workbench provides multimodal interaction; immersion is enhanced by head and hand tracking, haptic feedback, and additional audio cues. We present the motivation, design and implementation of the prototype system and describe some challenges ahead in the context of questions to be answered. Preliminary results indicate that visualization combined with haptic rendering intuitively conveys the salient characteristics of scientific data

    Computational field visualization

    Get PDF
    ManuscriptToday, scientists, engineers, and medical researchers routinely use computers to simulate complex physical phenomena. Such simulations present new challenges for computational scientists, including the need to effectively analyze and visualize complex three-dimensional data. As simulations become more complex and produce larger amounts of data, the effectiveness of utilizing such high resolution data will hinge upon the ability of human experts to interact with their data and extract useful information. Here we describe recent work at the SCI Institute in large-scale scalar, vector, and tensor visualization techniques. We end with a discussion of ideas for the integration of techniques for creating computational multi-field visualizations

    A comprehensive calibration and registration procedure for the Visual Haptic Workbench

    Full text link

    Constraint-based technique for haptic volume exploration

    Get PDF
    Journal ArticleWe present a haptic rendering technique that uses directional constraints to facilitate enhanced exploration modes for volumetric datasets. The algorithm restricts user motion in certain directions by incrementally moving a proxy point along the axes of a local reference frame. Reaction forces are generated by a spring coupler between the proxy and the data probe, which can be tuned to the capabilities of the haptic interface. Secondary haptic effects including field forces, friction, and texture can be easily incorporated to convey information about additional characteristics of the data. We illustrate the technique with two examples: displaying fiber orientation in heart muscle layers and exploring diffusion tensor fiber tracts in brain white matter tissue. Initial evaluation of the approach indicates that haptic constraints provide an intuitive means for displaying directional information in volume data

    Visual-Tactile Image Representation For The Visually Impaired Using Braille Device

    Get PDF
    Nowadays Internet usage is dramatically increasing all over the world and the information dissemination and acquisition is easier for sighted users. Unfortunately, visually impaired are still facing difficulties in interaction with websites. Particularly, screen reader is unable to facilitate disabled users to identify images such as basic geometric shapes. Inability to identify the shapes displayed on the screen creates restriction to interact and comprehend the content of websites for visually impaired. Thus, this project examines earlier researches and eases the web interaction of the blind people by identifying the shape of visual image converted into tactile representation using Braille device. For further investigation of the hypotheses, qualitative and quantitative method is used. The study findings are addressed to build a system that tackles the issue that screen reader is unable to address. System evaluation is executed upon producing the prototype of the system which comprises of user testing. The system is expected to improve understanding the content of webpage and enhance the interaction of visually impaired with web. Future recommendations and further findings will be discussed when system prototype milestone is fulfilled

    Prop-Based Haptic Interaction with Co-location and Immersion: an Automotive Application

    Get PDF
    Most research on 3D user interfaces aims at providing only a single sensory modality. One challenge is to integrate several sensory modalities into a seamless system while preserving each modality's immersion and performance factors. This paper concerns manipulation tasks and proposes a visuo-haptic system integrating immersive visualization, tactile force and tactile feedback with co-location. An industrial application is presented

    Improved calibration Framework for electromagnetic tracking devices

    Get PDF
    Journal ArticleElectromagnetic trackers have many favorable characteristics but are notorious for their sensitivity to magnetic field distortions resulting from metal and electronic equipment in the environment. We categorize existing tracker calibration methods and present an improved technique for reducing static position and orientation errors inherent to these devices. A quaternion based formulation provides a simple and fast computational framework for representing orientation errors. Our experimental apparatus consists of a 6DOF mobile platform and an optical position measurement system, allowing collection of full pose data at nearly arbitrary orientations of the receiver. A polynomial correction technique is applied and evaluated using a Polhemus Fastrak resulting in a substantial improvement of tracking accuracy. Finally, we apply advanced visualization algorithms to give new insight into the nature of the magnetic distortion field

    Natural Interaction Using Pinch Gloves

    Get PDF
    Research on heuristics evaluation in recent years has focused on improving effectiveness and efficiency with respect to user testing. The aim of this project is to refine a research agenda for comparing and evaluating the usage of Pinch Gloves with other common virtual reality (VR) devices. For this, Nielsen's heuristics is used mainly for the comparative study and evaluation with the help of experts and evaluators to evaluate and examine the cognitive principles in usability and efficiency. A more significant contribution of this research project is that the framework used for experiments will prove which device has its upper hand that will correspond with the objective of this project
    corecore