1,154 research outputs found

    On the design of a real-time volume rendering engine

    Get PDF
    An architecture for a Real-Time Volume Rendering Engine (RT-VRE) is given, capable of computing 750 × 750 × 512 samples from a 3D dataset at a rate of 25 images per second. The RT-VRE uses for this purpose 64 dedicated rendering chips, cooperating with 16 RISC-processors. A plane interpolator circuit and a composition circuit, both capable to operate at very high speeds, have been designed for a 1.6 micron VLSI process. Both the interpolator and composition circuit are back from production. They have been tested and both complied with our specifications

    An approximation to multiple scattering in volumetric illumination towards real-time rendering

    Get PDF
    Many volumetric illumination techniques for volume rendering were developed through out the years. However, there are still many constraints regarding the computation of multiple scattering path tracing in real-time applications due to its natural complexity and scale. Path tracing with multiple scattering support can produce physically correct results but suffers from noise and low convergence rates. This work proposes a new real-time algorithm to approximate multiple scattering, usually only available in offline rendering production, to real-time. Our approach explores the human perceptual system to speed up computation. Given two images, we use a CIE metric stating that the two will be perceived as similar to the human eye if the Euclidean distance between the two images in CIELAB color space is smaller than 2.3. Hence, we use this premise to guide our in vestigations when changing ray and bounce parameters in our renderer. Our results show that we can reduce from 105 to 104 Samples Per Pixel (SPP) with a negligible perceptual difference between both results, allowing us to cut rendering times by 10 whenever we divide SPP by 10. Similarly, we can reduce the number of bounces from 1000 to 100 with a negligible perceptual difference while reducing rendering times by almost half. We also propose a new algorithm in real-time, Lobe Estimator, that approximates these behaviors and parameters while performing twice as faster as the classic Ray Marching technique.Muitas técnicas de ilmuninação volumétrica foram desenvolvidas ao longo dos anos. Entretanto, ainda há muitas restrições na computação de multiple scattering em aplicações de tempo real usando path tracing, devido à sua complexidade e escala. Path tracing com suporte a multiple scattering é capaz de produzir resultados fisicamente corretos, mas sofre de ruídos e baixa taixa de convergência. Portanto, este trabalho propõe um novo algoritmo de tempo real para aproximar multiple scattering, usado em offline rendering. Nossa abordagem irá explorar o sistema perceptual visual humano para acelerar a computação. A partir de duas imagens, nós usamos a métrica da CIE que afirma que duas imagens são percebidas como similar ao olho humano se a distância Euclidiana das duas imagens no espaço de cores CIELAB for menor que 2.3. Dessa forma, nós usamos essa premissa para guiar nossas investigações quando alterando os parâmetros de Samples Per Pixel (SPP) e bounces nos renderizadores. Nossos resultados mostram que podemos redu zir de 105 para 104 Samples Per Pixel (SPP) com uma diferença perceptual negligenciável entre ambos paramêtros, permitindo reduzir o tempo de renderização por 10 a cada vez que dividimos o SPP por 10. Similarmente, nós podemos reduzir o número de bounces de 1000 para 100 com uma diferença perceptual negligenciável, enquanto reduzindo o tempo de renderização por quase metade. Nós também propusemos um novo algoritmo em tempo real, Lobe Estimator, que permite aproximar esses comportamentos e paramê tros enquanto permformando duas vezes mais rápido que o clássico Ray Marching

    On-Demand Monitoring of Construction Projects through a Game-Like Hybrid Application of BIM and Machine Learning

    Get PDF
    While unavoidable, inspections, progress monitoring, and comparing as-planned with as-built conditions in construction projects do not readily add tangible intrinsic value to the end-users. In large-scale construction projects, the process of monitoring the implementation of every single part of buildings and reflecting them on the BIM models can become highly labour intensive and error-prone, due to the vast amount of data produced in the form of schedules, reports and photo logs. In order to address the mentioned methodological and technical gap, this paper presents a framework and a proof of concept prototype for on-demand automated simulation of construction projects, integrating some cutting edge IT solutions, namely image processing, machine learning, BIM and Virtual Reality. This study utilised the Unity game engine to integrate data from the original BIM models and the as-built images, which were processed via various computer vision techniques. These methods include object recognition and semantic segmentation for identifying different structural elements through supervised training in order to superimpose the real world images on the as-planned model. The proposed framework leads to an automated update of the 3D virtual environment with states of the construction site. This framework empowers project managers and stockholders with an advanced decision-making tool, highlighting the inconsistencies in an effective manner. This paper contributes to body knowledge by providing a technical exemplar for the integration of ML and image processing approaches with immersive and interactive BIM interfaces, the algorithms and program codes of which can help replicability of these approaches by other scholars

    Vector-Processing for Mobile Devices: Benchmark and Analysis

    Full text link
    Vector processing has become commonplace in today's CPU microarchitectures. Vector instructions improve performance and energy which is crucial for resource-constraint mobile devices. The research community currently lacks a comprehensive benchmark suite to study the benefits of vector processing for mobile devices. This paper presents Swan-an extensive vector processing benchmark suite for mobile applications. Swan consists of a diverse set of data-parallel workloads from four commonly used mobile applications: operating system, web browser, audio/video messaging application, and PDF rendering engine. Using Swan benchmark suite, we conduct a detailed analysis of the performance, power, and energy consumption of vectorized workloads, and show that: (a) Vectorized kernels increase the pressure on cache hierarchy due to the higher rate of memory requests. (b) Vector processing is more beneficial for workloads with lower precision operations and higher cache hit rates. (c) Limited Instruction-Level Parallelism and strided memory accesses to multi-dimensional data structures prevent vector processing benefits from scaling with more SIMD functional units and wider registers. (d) Despite lower computation throughput than domain-specific accelerators, such as GPU, vector processing outperforms these accelerators for kernels with lower operation counts. Finally, we show five common computation patterns in mobile data-parallel workloads that dominate the execution time.Comment: 2023 IEEE International Symposium on Workload Characterization (IISWC

    The ARIN Virtual Reality Experience and Writing about VR for a Popular Audience

    Get PDF
    ARIN is a virtual reality, sci-fi horror experience for the HTC Vive, which incorporates visual and tactile performance elements and staging to increase the viewer’s sense of immersion. The first part of this paper covers the design process of the ARIN Virtual Reality Experience from concept to completion including playtesting and critical analysis. The second, written individually by Izzie Schiavone, explores how popular science writing uses the Hero\u27s Journey as a narrative structure that facilitates the explanation of scientific knowledge for a popular audience. The findings from studying popular science writing were used to write an article about VR and the development of the ARIN Virtual Reality Experience

    Observational constraints on the physics behind the evolution of AGN since z ~ 1

    Full text link
    We explore the evolution with redshift of the rest-frame colours and space densities of AGN hosts (relative to normal galaxies) to shed light on the dominant mechanism that triggers accretion onto supermassive black holes as a function of cosmic time. Data from serendipitous wide-area XMM surveys of the SDSS footprint (XMM/SDSS, Needles in the Haystack survey) are combined with Chandra deep observations in the AEGIS, GOODS-North and GOODS-South to compile uniformly selected samples of moderate luminosity X-ray AGN [L_X(2-10keV) = 1e41-1e44erg/s] at redshifts 0.1, 0.3 and 0.8. It is found that the fraction of AGN hosted by red versus blue galaxies does not change with redshift. Also, the X-ray luminosity density associated with either red or blue AGN hosts remains nearly constant since z=0.8. X-ray AGN represent a roughly fixed fraction of the space density of galaxies of given optical luminosity at all redshifts probed by our samples. In contrast the fraction of X-ray AGN among galaxies of a given stellar mass decreases with decreasing redshift. These findings suggest that the same process or combination of processes for fueling supermassive black holes are in operation in the last 5 Gyrs of cosmic time. The data are consistent with a picture in which the drop of the accretion power during that period (1dex since z=0.8) is related to the decline of the space density of available AGN hosts, as a result of the evolution of the specific star-formation rate of the overall galaxy population. Scenarios which attribute the evolution of moderate luminosity AGN since z \approx 1 to changes in the suppermassive black hole accretion mode are not favored by our results.Comment: MNRAS accepted, 15 pages, 10 figure

    Virtual reality exposure therapy for social phobia

    Get PDF
    This thesis presents researches and experiments performed in collaboration with a psychiatrist in order to validate and improve the use of virtual reality in social phobia psychotherapy. Cognitive and behavioral therapies are strongly based on the exposure to anxiety provoking stimuli. Virtual reality seems to be appropriate for such exposures as it allows for on-demand reproduction of reality. The idea has been validated for the treatment of various phobias but is more delicate in the case of social phobia; whereas the sense of presence provoked by the immersion in a virtual environment supports the emergence of fears linked to a location, we had to verify that we can reproduce social phobia related anxiety-provoking stimuli by simulating virtual humans. Therefore, and in order to provide therapists with an efficient virtual reality system dedicated to the exposure to social situations, we have developed software solutions supporting different immersion setups and enabling realistic simulations of inhabited virtual environments. We have experimented with public speaking scenarios within a preliminary study, three clinical case studies and a validation study on 200 subjects. We have been able to confirm that our virtual reality platform fulfilled therapeutic exposure requirements for social phobia. Moreover, we have been able to show that virtual reality exposure has additional advantages such as the possibility to improve clinical assessment with embedded monitoring tools. Our experiments with physiological measurements and eye tracking technology during immersion leaded to the validation of systems for objective and reliable assessment of patients' safety behaviors. The observation of such phobic reactions has confirmed the simulation impact and may provide therapists with enhanced pathological progression monitoring. During our experiments, we have also been able to observe that subjects' reactions during immersion were so much influenced by their sensitivity to fearful stimuli that their cognitive reactions were 'overloaded' by the arousal of anxiety and emotions. This has allowed us to consider that the sense of presence was more importantly related to the subjective impact of the content than to the technological process

    Massive Ellipticals at High Redshift: NICMOS Imaging of Z~1 Radio Galaxies

    Full text link
    We present deep, continuum images of eleven high-redshift (0.811 < z < 1.875) 3CR radio galaxies observed with NICMOS. Our images probe the rest-frame optical light where stars are expected to dominate the galaxy luminosity. The rest-frame UV light of eight of these galaxies demonstrates the well-known ``alignment effect''. Most of the radio galaxies have rounder, more symmetric morphologies at rest-frame optical wavelengths. Here we show the most direct evidence that in most cases the stellar hosts are normal elliptical galaxies with de Vaucouleurs law light profiles. For a few galaxies very faint traces of the UV-bright aligned component are also visible in the infrared images. We derive both the effective radius and surface-brightness for nine of eleven sample galaxies by fitting surface-brightness models to them. We find their sizes are similar to those of local FRII radio source hosts and are in general larger than other local galaxies. The derived host galaxy luminosities are very high and lie at the bright end of luminosity functions constructed at similar redshifts. The galaxies in our sample are also brighter than the rest-frame size--surface-brightness locus defined by the low-redshift sources. Passive evolution roughly aligns the z ~ 1 galaxies with the low-redshift samples. The optical host is sometimes centered on a local minimum in the rest-frame UV emission, suggesting the presence of substantial dust obscuration. We also see good evidence of nuclear point sources in three galaxies. Overall, our results are consistent with the hypothesis that these galaxies have already formed the bulk of their stars at redshifts greater than z >~ 2, and that the AGN phenomenon takes place within otherwise normal, perhaps passively evolving, galaxies. (abridged)Comment: 28 pages, 14 figures, accepted to ApJ. Uses AASTEX and emulateapj

    Visual Perception in Simulated Reality

    Get PDF

    The Knothole, April 11, 1974

    Get PDF
    6 page issue of The Knothole. The mission of The Knothole publication is to provide its readers with writings that are both stimulating and contemporary; to inform its students of clubs, events, and off-campus happenings; to challenge a world driven by progress to uncover the truth about current environmental policies and innovations; and to express such ideas, ingeniously and collectively.https://digitalcommons.esf.edu/knothole/1286/thumbnail.jp
    • …
    corecore