34,874 research outputs found

    CLOSER: A Collaborative Locality-aware Overlay SERvice

    Get PDF
    Current Peer-to-Peer (P2P) file sharing systems make use of a considerable percentage of Internet Service Providers (ISPs) bandwidth. This paper presents the Collaborative Locality-aware Overlay SERvice (CLOSER), an architecture that aims at lessening the usage of expensive international links by exploiting traffic locality (i.e., a resource is downloaded from the inside of the ISP whenever possible). The paper proves the effectiveness of CLOSER by analysis and simulation, also comparing this architecture with existing solutions for traffic locality in P2P systems. While savings on international links can be attractive for ISPs, it is necessary to offer some features that can be of interest for users to favor a wide adoption of the application. For this reason, CLOSER also introduces a privacy module that may arouse the users' interest and encourage them to switch to the new architectur

    QoE in Pull Based P2P-TV Systems: Overlay Topology Design Tradeoff

    Get PDF
    Abstract—This paper presents a systematic performance anal-ysis of pull P2P video streaming systems for live applications, providing guidelines for the design of the overlay topology and the chunk scheduling algorithm. The contribution of the paper is threefold: 1) we propose a realistic simulative model of the system that represents the effects of access bandwidth heterogeneity, latencies, peculiar characteristics of the video, while still guaranteeing good scalability properties; 2) we propose a new latency/bandwidth-aware overlay topology design strategy that improves application layer performance while reducing the underlying transport network stress; 3) we investigate the impact of chunk scheduling algorithms that explicitly exploit properties of encoded video. Results show that our proposal jointly improves the actual Quality of Experience of users and reduces the cost the transport network has to support. I

    Device-Aware Routing and Scheduling in Multi-Hop Device-to-Device Networks

    Full text link
    The dramatic increase in data and connectivity demand, in addition to heterogeneous device capabilities, poses a challenge for future wireless networks. One of the promising solutions is Device-to-Device (D2D) networking. D2D networking, advocating the idea of connecting two or more devices directly without traversing the core network, is promising to address the increasing data and connectivity demand. In this paper, we consider D2D networks, where devices with heterogeneous capabilities including computing power, energy limitations, and incentives participate in D2D activities heterogeneously. We develop (i) a device-aware routing and scheduling algorithm (DARS) by taking into account device capabilities, and (ii) a multi-hop D2D testbed using Android-based smartphones and tablets by exploiting Wi-Fi Direct and legacy Wi-Fi connections. We show that DARS significantly improves throughput in our testbed as compared to state-of-the-art
    corecore