2 research outputs found

    The Synthesis and Analysis of Stochastic Switching Circuits

    Get PDF
    Stochastic switching circuits are relay circuits that consist of stochastic switches called pswitches. The study of stochastic switching circuits has widespread applications in many fields of computer science, neuroscience, and biochemistry. In this paper, we discuss several properties of stochastic switching circuits, including robustness, expressibility, and probability approximation. First, we study the robustness, namely, the effect caused by introducing an error of size \epsilon to each pswitch in a stochastic circuit. We analyze two constructions and prove that simple series-parallel circuits are robust to small error perturbations, while general series-parallel circuits are not. Specifically, the total error introduced by perturbations of size less than \epsilon is bounded by a constant multiple of \epsilon in a simple series-parallel circuit, independent of the size of the circuit. Next, we study the expressibility of stochastic switching circuits: Given an integer q and a pswitch set S=\{\frac{1}{q},\frac{2}{q},...,\frac{q-1}{q}\}, can we synthesize any rational probability with denominator q^n (for arbitrary n) with a simple series-parallel stochastic switching circuit? We generalize previous results and prove that when q is a multiple of 2 or 3, the answer is yes. We also show that when q is a prime number larger than 3, the answer is no. Probability approximation is studied for a general case of an arbitrary pswitch set S=\{s_1,s_2,...,s_{|S|}\}. In this case, we propose an algorithm based on local optimization to approximate any desired probability. The analysis reveals that the approximation error of a switching circuit decreases exponentially with an increasing circuit size.Comment: 2 columns, 15 page

    Synthesis of Stochastic Flow Networks

    Get PDF
    A stochastic flow network is a directed graph with incoming edges (inputs) and outgoing edges (outputs), tokens enter through the input edges, travel stochastically in the network, and can exit the network through the output edges. Each node in the network is a splitter, namely, a token can enter a node through an incoming edge and exit on one of the output edges according to a predefined probability distribution. Stochastic flow networks can be easily implemented by DNA-based chemical reactions, with promising applications in molecular computing and stochastic computing. In this paper, we address a fundamental synthesis question: Given a finite set of possible splitters and an arbitrary rational probability distribution, design a stochastic flow network, such that every token that enters the input edge will exit the outputs with the prescribed probability distribution. The problem of probability transformation dates back to von Neumann's 1951 work and was followed, among others, by Knuth and Yao in 1976. Most existing works have been focusing on the "simulation" of target distributions. In this paper, we design optimal-sized stochastic flow networks for "synthesizing" target distributions. It shows that when each splitter has two outgoing edges and is unbiased, an arbitrary rational probability \frac{a}{b} with a\leq b\leq 2^n can be realized by a stochastic flow network of size n that is optimal. Compared to the other stochastic systems, feedback (cycles in networks) strongly improves the expressibility of stochastic flow networks.Comment: 2 columns, 15 page
    corecore