1,447 research outputs found

    Quality-constrained routing in publish/subscribe systems

    Get PDF
    Routing in publish/subscribe (pub/sub) features a communication model where messages are not given explicit destination addresses, but destinations are determined by matching the subscription declared by subscribers. For a dynamic computing environment with applications that have quality demands, this is not sufficient. Routing decision should, in such environments, not only depend on the subscription predicate, but should also take the quality-constraints of applications and characteristics of network paths into account. We identified three abstraction levels of these quality constraints: functional, middleware and network. The main contribution of the paper is the concept of the integration of these constraints into the pub/sub routing. This is done by extending the syntax of pub/sub system and applying four generic, proposed by us, guidelines. The added values of quality-constrained routing concept are: message delivery satisfying quality demands of applications, improvement of system scalability and more optimise use of the network resources. We discuss the use case that shows the practical value of our concept

    Confidentiality-Preserving Publish/Subscribe: A Survey

    Full text link
    Publish/subscribe (pub/sub) is an attractive communication paradigm for large-scale distributed applications running across multiple administrative domains. Pub/sub allows event-based information dissemination based on constraints on the nature of the data rather than on pre-established communication channels. It is a natural fit for deployment in untrusted environments such as public clouds linking applications across multiple sites. However, pub/sub in untrusted environments lead to major confidentiality concerns stemming from the content-centric nature of the communications. This survey classifies and analyzes different approaches to confidentiality preservation for pub/sub, from applications of trust and access control models to novel encryption techniques. It provides an overview of the current challenges posed by confidentiality concerns and points to future research directions in this promising field

    A schema-based P2P network to enable publish-subscribe for multimedia content in open hypermedia systems

    No full text
    Open Hypermedia Systems (OHS) aim to provide efficient dissemination, adaptation and integration of hyperlinked multimedia resources. Content available in Peer-to-Peer (P2P) networks could add significant value to OHS provided that challenges for efficient discovery and prompt delivery of rich and up-to-date content are successfully addressed. This paper proposes an architecture that enables the operation of OHS over a P2P overlay network of OHS servers based on semantic annotation of (a) peer OHS servers and of (b) multimedia resources that can be obtained through the link services of the OHS. The architecture provides efficient resource discovery. Semantic query-based subscriptions over this P2P network can enable access to up-to-date content, while caching at certain peers enables prompt delivery of multimedia content. Advanced query resolution techniques are employed to match different parts of subscription queries (subqueries). These subscriptions can be shared among different interested peers, thus increasing the efficiency of multimedia content dissemination

    Enabling Confidentiality in Content-Based Publish/Subscribe Infrastructures

    Get PDF
    Content-Based Publish/Subscribe (CBPS) is an interaction model where the interests of subscribers are stored in a content-based forwarding infrastructure to guide routing of notifications to interested parties. In this paper, we focus on answering the following question: Can we implement content-based publish/subscribe while keeping subscriptions and notifications confidential from the forwarding brokers? Our contributions include a systematic analysis of the problem, providing a formal security model and showing that the maximum level of attainable security in this setting is restricted. We focus on enabling provable confidentiality for commonly used applications and subscription languages in CBPS and present a series of practical provably secure protocols, some of which are novel and others adapted from existing work. We have implemented these protocols in SIENA, a popular CBPS system. Evaluation results show that confidential content-based publish/subscribe is practical: A single broker serving 1000 subscribers is able to route more than 100 notifications per second with our solutions

    A Peer-to-Peer Approach to Content-Based Publish/Subscribe

    Get PDF
    Publish/subscribe systems are successfully used to decouple distributed applications. However, their e#ciency is closely tied to the topology of the underlying network, the design of which has been neglected. Peer-to-peer network topologies can o#er inherently bounded delivery depth, load sharing, and self-organisation. In this paper, we present a contentbased publish/subscribe system routed over a peer-to-peer topology graph. The implications of combining these approaches are explored and a particular implementation using elements from Rebeca and Chord is proven correct

    Arbitrary boolean advertisements: the final step in supporting the boolean publish/subscribe model

    Get PDF
    Publish/subscribe systems allow for an efficient filtering of incoming information. This filtering is based on the specifications of subscriber interests, which are registered with the system as subscriptions. Publishers conversely specify advertisements, describing the messages they will send later on. What is missing so far is the support of arbitrary Boolean advertisements in publish/subscribe systems. Introducing the opportunity to specify these richer Boolean advertisements increases the accuracy of publishers to state their future messages compared to currently supported conjunctive advertisements. Thus, the amount of subscriptions forwarded in the network is reduced. Additionally, the system can more time efficiently decide whether a subscription needs to be forwarded and more space efficiently store and index advertisements. In this paper, we introduce a publish/subscribe system that supports arbitrary Boolean advertisements and, symmetrically, arbitrary Boolean subscriptions. We show the advantages of supporting arbitrary Boolean advertisements and present an algorithm to calculate the practically required overlapping relationship among subscriptions and advertisements. Additionally, we develop the first optimization approach for arbitrary Boolean advertisements, advertisement pruning. Advertisement pruning is tailored to optimize advertisements, which is a strong contrast to current optimizations for conjunctive advertisements. These recent proposals mainly apply subscription-based optimization ideas, which is leading to the same disadvantages. In the second part of this paper, our evaluation of practical experiments, we analyze the efficiency properties of our approach to determine the overlapping relationship. We also compare conjunctive solutions for the overlapping problem to our calculation algorithm to show its benefits. Finally, we present a detailed evaluation of the optimization potential of advertisement pruning. This includes the analysis of the effects of additionally optimizing subscriptions on the advertisement pruning optimization
    corecore