3 research outputs found

    The Study on the Nonlinear Computations of the DQ and DC Methods

    No full text
    to their global domain property, are more efficient for nonlinear problems than the traditional numerical techniques such as finite element and finite difference methods. By introducing the Hadamard product of matrices, we obtain an explicit matrix formulation for the DQ and DC solutions of nonlinear differential and integro-differential equations. Due to its simplicity and flexibility, the present Hadamard product approach makes the DQ and DC methods much easier to use. Many studies on the Hadamard product can be fully exploited for the DQ and DC nonlinear computations. Furthermore, we first present the SJT product of matrix and vector to compute accurately and efficiently the Frechet derivative matrix in the Newton–Raphson method for the solution of the nonlinear formulations. We also propose a simple approach to simplify the DQ or DC formulations for some nonlinear differential operators and, thus, the computational efficiency of these methods is significantly improved. We give the matrix multiplication formulas to efficiently compute the weighting coefficient matrices of the DC method. The spherical harmonics are suggested as the test functions in the DC method to handle the nonlinear differential equations occurring in global and hemispheric weather forecasting problems. Some examples are analyzed to demonstrate the simplicity and efficiency of the presented techniques. It is emphasized that the innovations presented are applicable to the nonlinear computations of the other numerical methods as well. c ○ 1997 John Wiley & Sons, Inc. I
    corecore