28,421 research outputs found

    Supervised cross-modal factor analysis for multiple modal data classification

    Full text link
    In this paper we study the problem of learning from multiple modal data for purpose of document classification. In this problem, each document is composed two different modals of data, i.e., an image and a text. Cross-modal factor analysis (CFA) has been proposed to project the two different modals of data to a shared data space, so that the classification of a image or a text can be performed directly in this space. A disadvantage of CFA is that it has ignored the supervision information. In this paper, we improve CFA by incorporating the supervision information to represent and classify both image and text modals of documents. We project both image and text data to a shared data space by factor analysis, and then train a class label predictor in the shared space to use the class label information. The factor analysis parameter and the predictor parameter are learned jointly by solving one single objective function. With this objective function, we minimize the distance between the projections of image and text of the same document, and the classification error of the projection measured by hinge loss function. The objective function is optimized by an alternate optimization strategy in an iterative algorithm. Experiments in two different multiple modal document data sets show the advantage of the proposed algorithm over other CFA methods

    Data fusion strategy for precise vehicle location for intelligent self-aware maintenance systems

    Get PDF
    Abstract— Nowadays careful measurement applications are handed over to Wired and Wireless Sensor Network. Taking the scenario of train location as an example, this would lead to an increase in uncertainty about position related to sensors with long acquisition times like Balises, RFID and Transponders along the track. We take into account the data without any synchronization protocols, for increase the accuracy and reduce the uncertainty after the data fusion algorithms. The case studies, we have analysed, derived from the needs of the project partners: train localization, head of an auger in the drilling sector localization and the location of containers of radioactive material waste in a reprocessing nuclear plant. They have the necessity to plan the maintenance operations of their infrastructure basing through architecture that taking input from the sensors, which are localization and diagnosis, maps and cost, to optimize the cost effectiveness and reduce the time of operation

    Extremal optimization for sensor report pre-processing

    Full text link
    We describe the recently introduced extremal optimization algorithm and apply it to target detection and association problems arising in pre-processing for multi-target tracking. Here we consider the problem of pre-processing for multiple target tracking when the number of sensor reports received is very large and arrives in large bursts. In this case, it is sometimes necessary to pre-process reports before sending them to tracking modules in the fusion system. The pre-processing step associates reports to known tracks (or initializes new tracks for reports on objects that have not been seen before). It could also be used as a pre-process step before clustering, e.g., in order to test how many clusters to use. The pre-processing is done by solving an approximate version of the original problem. In this approximation, not all pair-wise conflicts are calculated. The approximation relies on knowing how many such pair-wise conflicts that are necessary to compute. To determine this, results on phase-transitions occurring when coloring (or clustering) large random instances of a particular graph ensemble are used.Comment: 10 page
    • …
    corecore