13,838 research outputs found

    Broadband cloaking with volumetric structures composed of two-dimensional transmission-line networks

    Full text link
    The cloaking performance of two microwave cloaks, both based on the recently proposed transmission-line approach, are studied using commercial full-wave simulation software. The cloaks are shown to be able to reduce the total scattering cross sections of metallic objects of some restricted shapes and sizes. One of the studied cloaks is electrically small in diameter, and the other is electrically large, with the diameter equal to several wavelengths.Comment: 6 pages, 7 figure

    Experimental realization of a broadband illusion optics device

    Full text link
    We experimentally demonstrate the first metamaterial "illusion optics" device - an "invisible gateway" by using a transmission-line medium. The device contains an open channel that can block electromagnetic waves at a particular frequency range. We also demonstrate that such a device can work in a broad frequency range.Comment: 9 pages, 5 figure

    Recognizing and Curating Photo Albums via Event-Specific Image Importance

    Full text link
    Automatic organization of personal photos is a problem with many real world ap- plications, and can be divided into two main tasks: recognizing the event type of the photo collection, and selecting interesting images from the collection. In this paper, we attempt to simultaneously solve both tasks: album-wise event recognition and image- wise importance prediction. We collected an album dataset with both event type labels and image importance labels, refined from an existing CUFED dataset. We propose a hybrid system consisting of three parts: A siamese network-based event-specific image importance prediction, a Convolutional Neural Network (CNN) that recognizes the event type, and a Long Short-Term Memory (LSTM)-based sequence level event recognizer. We propose an iterative updating procedure for event type and image importance score prediction. We experimentally verified that image importance score prediction and event type recognition can each help the performance of the other.Comment: Accepted as oral in BMVC 201

    Broadcast Coded Slotted ALOHA: A Finite Frame Length Analysis

    Full text link
    We propose an uncoordinated medium access control (MAC) protocol, called all-to-all broadcast coded slotted ALOHA (B-CSA) for reliable all-to-all broadcast with strict latency constraints. In B-CSA, each user acts as both transmitter and receiver in a half-duplex mode. The half-duplex mode gives rise to a double unequal error protection (DUEP) phenomenon: the more a user repeats its packet, the higher the probability that this packet is decoded by other users, but the lower the probability for this user to decode packets from others. We analyze the performance of B-CSA over the packet erasure channel for a finite frame length. In particular, we provide a general analysis of stopping sets for B-CSA and derive an analytical approximation of the performance in the error floor (EF) region, which captures the DUEP feature of B-CSA. Simulation results reveal that the proposed approximation predicts very well the performance of B-CSA in the EF region. Finally, we consider the application of B-CSA to vehicular communications and compare its performance with that of carrier sense multiple access (CSMA), the current MAC protocol in vehicular networks. The results show that B-CSA is able to support a much larger number of users than CSMA with the same reliability.Comment: arXiv admin note: text overlap with arXiv:1501.0338

    A Probabilistic Embedding Clustering Method for Urban Structure Detection

    Full text link
    Urban structure detection is a basic task in urban geography. Clustering is a core technology to detect the patterns of urban spatial structure, urban functional region, and so on. In big data era, diverse urban sensing datasets recording information like human behaviour and human social activity, suffer from complexity in high dimension and high noise. And unfortunately, the state-of-the-art clustering methods does not handle the problem with high dimension and high noise issues concurrently. In this paper, a probabilistic embedding clustering method is proposed. Firstly, we come up with a Probabilistic Embedding Model (PEM) to find latent features from high dimensional urban sensing data by learning via probabilistic model. By latent features, we could catch essential features hidden in high dimensional data known as patterns; with the probabilistic model, we can also reduce uncertainty caused by high noise. Secondly, through tuning the parameters, our model could discover two kinds of urban structure, the homophily and structural equivalence, which means communities with intensive interaction or in the same roles in urban structure. We evaluated the performance of our model by conducting experiments on real-world data and experiments with real data in Shanghai (China) proved that our method could discover two kinds of urban structure, the homophily and structural equivalence, which means clustering community with intensive interaction or under the same roles in urban space.Comment: 6 pages, 7 figures, ICSDM201
    • …
    corecore