124,254 research outputs found

    Significant Conditions on the Two-electron Reduced Density Matrix from the Constructive Solution of N-representability

    Full text link
    We recently presented a constructive solution to the N-representability problem of the two-electron reduced density matrix (2-RDM)---a systematic approach to constructing complete conditions to ensure that the 2-RDM represents a realistic N-electron quantum system [D. A. Mazziotti, Phys. Rev. Lett. 108, 263002 (2012)]. In this paper we provide additional details and derive further N-representability conditions on the 2-RDM that follow from the constructive solution. The resulting conditions can be classified into a hierarchy of constraints, known as the (2,q)-positivity conditions where the q indicates their derivation from the nonnegativity of q-body operators. In addition to the known T1 and T2 conditions, we derive a new class of (2,3)-positivity conditions. We also derive 3 classes of (2,4)-positivity conditions, 6 classes of (2,5)-positivity conditions, and 24 classes of (2,6)-positivity conditions. The constraints obtained can be divided into two general types: (i) lifting conditions, that is conditions which arise from lifting lower (2,q)-positivity conditions to higher (2,q+1)-positivity conditions and (ii) pure conditions, that is conditions which cannot be derived from a simple lifting of the lower conditions. All of the lifting conditions and the pure (2,q)-positivity conditions for q>3 require tensor decompositions of the coefficients in the model Hamiltonians. Subsets of the new N-representability conditions can be employed with the previously known conditions to achieve polynomially scaling calculations of ground-state energies and 2-RDMs of many-electron quantum systems even in the presence of strong electron correlation

    Comparison of one-dimensional and quasi-one-dimensional Hubbard models from the variational two-electron reduced-density-matrix method

    Full text link
    Minimizing the energy of an NN-electron system as a functional of a two-electron reduced density matrix (2-RDM), constrained by necessary NN-representability conditions (conditions for the 2-RDM to represent an ensemble NN-electron quantum system), yields a rigorous lower bound to the ground-state energy in contrast to variational wavefunction methods. We characterize the performance of two sets of approximate constraints, (2,2)-positivity (DQG) and approximate (2,3)-positivity (DQGT) conditions, at capturing correlation in one-dimensional and quasi-one-dimensional (ladder) Hubbard models. We find that, while both the DQG and DQGT conditions capture both the weak and strong correlation limits, the more stringent DQGT conditions improve the ground-state energies, the natural occupation numbers, the pair correlation function, the effective hopping, and the connected (cumulant) part of the 2-RDM. We observe that the DQGT conditions are effective at capturing strong electron correlation effects in both one- and quasi-one-dimensional lattices for both half filling and less-than-half filling

    Analyticity of Entropy Rate of Hidden Markov Chains

    Get PDF
    We prove that under mild positivity assumptions the entropy rate of a hidden Markov chain varies analytically as a function of the underlying Markov chain parameters. A general principle to determine the domain of analyticity is stated. An example is given to estimate the radius of convergence for the entropy rate. We then show that the positivity assumptions can be relaxed, and examples are given for the relaxed conditions. We study a special class of hidden Markov chains in more detail: binary hidden Markov chains with an unambiguous symbol, and we give necessary and sufficient conditions for analyticity of the entropy rate for this case. Finally, we show that under the positivity assumptions the hidden Markov chain {\em itself} varies analytically, in a strong sense, as a function of the underlying Markov chain parameters.Comment: The title has been changed. The new main theorem now combines the old main theorem and the remark following the old main theorem. A new section is added as an introduction to complex analysis. General principle and an example to determine the domain of analyticity of entropy rate have been added. Relaxed conditions for analyticity of entropy rate and the corresponding examples are added. The section about binary markov chain corrupted by binary symmetric noise is taken out (to be part of another paper

    The H-Covariant Strong Picard Groupoid

    Get PDF
    The notion of H-covariant strong Morita equivalence is introduced for *-algebras over C = R(i) with an ordered ring R which are equipped with a *-action of a Hopf *-algebra H. This defines a corresponding H-covariant strong Picard groupoid which encodes the entire Morita theory. Dropping the positivity conditions one obtains H-covariant *-Morita equivalence with its H-covariant *-Picard groupoid. We discuss various groupoid morphisms between the corresponding notions of the Picard groupoids. Moreover, we realize several Morita invariants in this context as arising from actions of the H-covariant strong Picard groupoid. Crossed products and their Morita theory are investigated using a groupoid morphism from the H-covariant strong Picard groupoid into the strong Picard groupoid of the crossed products.Comment: LaTeX 2e, 50 pages. Revised version with additional examples and references. To appear in JPA

    On Energy Conditions and Stability in Effective Loop Quantum Cosmology

    Full text link
    In isotropic loop quantum cosmology, non-perturbatively modified dynamics of a minimally coupled scalar field violates weak, strong and dominant energy conditions when they are stated in terms of equation of state parameter. The violation of strong energy condition helps to have non-singular evolution by evading singularity theorems thus leading to a generic inflationary phase. However, the violation of weak and dominant energy conditions raises concern, as in general relativity these conditions ensure causality of the system and stability of vacuum via Hawking-Ellis conservation theorem. It is shown here that the non-perturbatively modified kinetic term contributes negative pressure but positive energy density. This crucial feature leads to violation of energy conditions but ensures positivity of energy density, as scalar matter Hamiltonian remains bounded from below. It is also shown that the modified dynamics restricts group velocity for inhomogeneous modes to remain sub-luminal thus ensuring causal propagation across spatial distances.Comment: 29 pages, revtex4; few clarifications, references added, to appear in CQ

    Inviolable energy conditions from entanglement inequalities

    Get PDF
    Via the AdS/CFT correspondence, fundamental constraints on the entanglement structure of quantum systems translate to constraints on spacetime geometries that must be satisfied in any consistent theory of quantum gravity. In this paper, we investigate such constraints arising from strong subadditivity and from the positivity and monotonicity of relative entropy in examples with highly-symmetric spacetimes. Our results may be interpreted as a set of energy conditions restricting the possible form of the stress-energy tensor in consistent theories of Einstein gravity coupled to matter.Comment: 25 pages, 3 figures, v2: refs added, expanded discussion of strong subadditivity constraints in sections 2.1 and 4.

    Quantum Semi-Markov Processes

    Get PDF
    We construct a large class of non-Markovian master equations that describe the dynamics of open quantum systems featuring strong memory effects, which relies on a quantum generalization of the concept of classical semi-Markov processes. General conditions for the complete positivity of the corresponding quantum dynamical maps are formulated. The resulting non-Markovian quantum processes allow the treatment of a variety of physical systems, as is illustrated by means of various examples and applications, including quantum optical systems and models of quantum transport.Comment: 4 pages, revtex, no figures, to appear in Phys. Rev. Let

    A vicinal surface model for epitaxial growth with logarithmic free energy

    Full text link
    We study a continuum model for solid films that arises from the modeling of one-dimensional step flows on a vicinal surface in the attachment-detachment-limited regime. The resulting nonlinear partial differential equation, ut=−u2(u3+αu)hhhhu_t = -u^2(u^3+\alpha u)_{hhhh}, gives the evolution for the surface slope uu as a function of the local height hh in a monotone step train. Subject to periodic boundary conditions and positive initial conditions, we prove the existence, uniqueness and positivity of global strong solutions to this PDE using two Lyapunov energy functions. The long time behavior of uu converging to a constant that only depends on the initial data is also investigated both analytically and numerically.Comment: 18 pages, 7 figure
    • …
    corecore