8 research outputs found

    A convergent string method: Existence and approximation for the Hamiltonian boundary-value problem

    Get PDF
    This article studies the existence of long-time solutions to the Hamiltonian boundary value problem, and their consistent numerical approximation. Such a boundary value problem is, for example, common in Molecular Dynamics, where one aims at finding a dynamic trajectory that joins a given initial state with a final one, with the evolution being governed by classical (Hamiltonian) dynamics. The setting considered here is sufficiently general so that long time transition trajectories connecting two configurations can be included, provided the total energy EE is chosen suitably. In particular, the formulation presented here can be used to detect transition paths between two stable basins and thus to prove the existence of long-time trajectories. The starting point is the formulation of the equation of motion of classical mechanics in the framework of Jacobi's principle; a curve shortening procedure inspired by Birkhoff's method is then developed to find geodesic solutions. This approach can be viewed as a string method

    Stability of the Minimum Energy Path

    Full text link
    The minimum energy path (MEP) is the most probable transition path that connects two equilibrium states of a potential energy landscape. It has been widely used to study transition mechanisms as well as transition rates in the fields of chemistry, physics, and materials science. % In this paper, we derive a novel result establishing the stability of MEPs under perturbations of the energy landscape. The result also represents a crucial step towards studying the convergence of numerical discretisations of MEPs
    corecore