7 research outputs found

    Path Integrals in the Sky: Classical and Quantum Problems with Minimal Assumptions

    Get PDF
    Cosmology has, after the formulation of general relativity, been transformed from a branch of philosophy into an active field in physics. Notwithstanding the significant improvements in our understanding of our Universe, there are still many open questions on both its early and late time evolution. In this thesis, we investigate a range of problems in classical and quantum cosmology, using advanced mathematical tools, and making only minimal assumptions. In particular, we apply Picard-Lefschetz theory, catastrophe theory, infinite dimensional measure theory, and weak-value theory. To study the beginning of the Universe in quantum cosmology, we apply Picard-Lefschetz theory to the Lorentzian path integral for gravity. We analyze both the Hartle-Hawking no-boundary proposal and Vilenkin's tunneling proposal, and demonstrate that the Lorentzian path integral corresponding to the mini-superspace formulation of the two proposals is well-defined. However, when including fluctuations, we show that the path integral predicts the existence of large fluctuations. This indicates that the Universe cannot have had a smooth beginning in Euclidean de Sitter space. In response to these conclusions, the scientific community has made a series of adapted formulations of the no-boundary and tunneling proposals. We show that these new proposals suffer from similar issues. Second, we generalize the weak-value interpretation of quantum mechanics to relativistic systems. We apply this formalism to a relativistic quantum particle in a constant electric field. We analyze the evolution of the relativistic particle in both the classical and the quantum regime and evaluate the back-reaction of the Schwinger effect on the electric field in 1+11+1-dimensional spacetime, using analytical methods. In addition, we develop a numerical method to evaluate both the wavefunction and the corresponding weak-values in more general electric and magnetic fields. We conclude the quantum part of this thesis with a chapter on Lorentzian path integrals. We propose a new definition of the real-time path integral in terms of Brownian motion on the Lefschetz thimble of the theory. We prove the existence of a σ\sigma-measure for the path integral of the non-relativistic free particle, the (inverted) harmonic oscillator, and the relativistic particle in a range of potentials. We also describe how this proposal extends to more general path integrals. In the classical part of this thesis, we analyze two problems in late-time cosmology. Multi-dimensional oscillatory integrals are prevalent in physics, but notoriously difficult to evaluate. We develop a new numerical method, based on multi-dimensional Picard-Lefschetz theory, for the evaluation of these integrals. The virtue of this method is that its efficiency increases when integrals become more oscillatory. The method is applied to interference patterns of lensed images near caustics described by catastrophe theory. This analysis can help us understand the lensing of astrophysical sources by plasma lenses, which is especially relevant in light of the proposed lensing mechanism for fast radio bursts. Finally, we analyze large-scale structure formation in terms of catastrophe theory. We show that the geometric structure of the three-dimensional cosmic-web is determined by both the eigenvalue and the eigenvector fields of the deformation tensor. We formulate caustic conditions, classifying caustics using properties of these fields. When applied to the Zel'dovich approximation of structure formation, the caustic conditions enable us to construct a caustic skeleton of the three-dimensional cosmic-web in terms of the initial conditions

    Cosmic Web & Caustic Skeleton: non-linear Constrained Realizations - 2D case studies

    Get PDF
    The cosmic web consists of a complex configuration of voids, walls, filaments, and clusters, which formed under the gravitational collapse of Gaussian fluctuations. Understanding under what conditions these different structures emerge from simple initial conditions, and how different cosmological models influence their evolution, is central to the study of the large-scale structure. Here, we present a general formalism for setting up initial random density and velocity fields satisfying non-linear constraints for specialized N-body simulations. These allow us to link the non-linear conditions on the eigenvalue and eigenvector fields of the deformation tensor, as specified by caustic skeleton theory, to the current-day cosmic web. By extending constrained Gaussian random field theory, and the corresponding Hoffman-Ribak algorithm, to non-linear constraints, we probe the statistical properties of the progenitors of the walls, filaments, and clusters of the cosmic web. Applied to cosmological N-body simulations, the proposed techniques pave the way towards a systematic investigation of the evolution of the progenitors of the present-day walls, filaments, and clusters, and the embedded galaxies, putting flesh on the bones of the caustic skeleton. The developed non-linear constrained random field theory is valid for generic cosmological conditions. For ease of visualization, the case study presented here probes the two-dimensional caustic skeleton.</p

    The deep structure of Gaussian scale space images

    Get PDF
    In order to be able to deal with the discrete nature of images in a continuous way, one can use results of the mathematical field of 'distribution theory'. Under almost trivial assumptions, like 'we know nothing', one ends up with convolving the image with a Gaussian filter. In this manner scale is introduced by means of the filter's width. The ensemble of the image and its convolved versions at al scales is called a 'Gaussian scale space image'. The filter's main property is that the scale derivative equals the Laplacean of the spatial variables: it is the Greens function of the so-called Heat, or Diffusion, Equation. The investigation of the image all scales simultaneously is called 'deep structure'. In this thesis I focus on the behaviour of the elementary topological items 'spatial critical points' and 'iso-intensity manifolds'. The spatial critical points are traced over scale. Generically they are annihilated and sometimes created pair wise, involving extrema and saddles. The locations of these so-called 'catastrophe events' are calculated with sub-pixel precision. Regarded in the scale space image, these spatial critical points form one-dimensional manifolds, the so-called critical curves. A second type of critical points is formed by the scale space saddles. They are the only possible critical points in the scale space image. At these points the iso-intensity manifolds exhibit special behaviour: they consist of two touching parts, of which one intersects an extremum that is part of the critical curve containing the scale space saddle. This part of the manifold uniquely assigns an area in scale space to this extremum. The remaining part uniquely assigns it to 'other structure'. Since this can be repeated, automatically an algorithm is obtained that reveals the 'hidden' structure present in the scale space image. This topological structure can be hierarchically presented as a binary tree, enabling one to (de-)select parts of it, sweeping out parts, simplify, etc. This structure can easily be projected to the initial image resulting in an uncommitted 'pre-segmentation': a segmentation of the image based on the topological properties without any user-defined parameters or whatsoever. Investigation of non-generic catastrophes shows that symmetries can easily be dealt with. Furthermore, the appearance of creations is shown to be nothing but (instable) protuberances at critical curves. There is also biological inspiration for using a Gaussian scale space, since the visual system seems to use Gaussian-like filters: we are able of seeing and interpreting multi-scale

    Proceedings of the 9th MIT/ONR workshop on C3 Systems, held at Naval Postgraduate School and Hilton Inn Resort Hotel, Monterey, California June 2 through June 5, 1986

    Get PDF
    GRSN 627729"December 1986."Includes bibliographical references and index.Sponsored by Massachusetts Institute of Technology, Laboratory for Information and Decision Systems, Cambridge, Mass., with support from the Office of Naval Research. ONR/N00014-77-C-0532(NR041-519) Sponsored in cooperation with IEEE Control Systems Society, Technical Committee on C.edited by Michael Athans, Alexander H. Levis
    corecore