56,621 research outputs found

    Computing discrete logarithms in subfields of residue class rings

    Full text link
    Recent breakthrough methods \cite{gggz,joux,bgjt} on computing discrete logarithms in small characteristic finite fields share an interesting feature in common with the earlier medium prime function field sieve method \cite{jl}. To solve discrete logarithms in a finite extension of a finite field \F, a polynomial h(x) \in \F[x] of a special form is constructed with an irreducible factor g(x) \in \F[x] of the desired degree. The special form of h(x)h(x) is then exploited in generating multiplicative relations that hold in the residue class ring \F[x]/h(x)\F[x] hence also in the target residue class field \F[x]/g(x)\F[x]. An interesting question in this context and addressed in this paper is: when and how does a set of relations on the residue class ring determine the discrete logarithms in the finite fields contained in it? We give necessary and sufficient conditions for a set of relations on the residue class ring to determine discrete logarithms in the finite fields contained in it. We also present efficient algorithms to derive discrete logarithms from the relations when the conditions are met. The derived necessary conditions allow us to clearly identify structural obstructions intrinsic to the special polynomial h(x)h(x) in each of the aforementioned methods, and propose modifications to the selection of h(x)h(x) so as to avoid obstructions.Comment: arXiv admin note: substantial text overlap with arXiv:1312.167

    Asymptotic complexities of discrete logarithm algorithms in pairing-relevant finite fields

    Get PDF
    International audienceWe study the discrete logarithm problem at the boundary case between small and medium characteristic finite fields, which is precisely the area where finite fields used in pairing-based cryptosystems live. In order to evaluate the security of pairing-based protocols, we thoroughly analyze the complexity of all the algorithms that coexist at this boundary case: the Quasi-Polynomial algorithms, the Number Field Sieve and its many variants, and the Function Field Sieve. We adapt the latter to the particular case where the extension degree is composite, and show how to lower the complexity by working in a shifted function field. All this study finally allows us to give precise values for the characteristic asymptotically achieving the highest security level for pairings. Surprisingly enough, there exist special characteristics that are as secure as general ones
    corecore