40,511 research outputs found

    Bridging Convex and Nonconvex Optimization in Robust PCA: Noise, Outliers, and Missing Data

    Full text link
    This paper delivers improved theoretical guarantees for the convex programming approach in low-rank matrix estimation, in the presence of (1) random noise, (2) gross sparse outliers, and (3) missing data. This problem, often dubbed as robust principal component analysis (robust PCA), finds applications in various domains. Despite the wide applicability of convex relaxation, the available statistical support (particularly the stability analysis vis-a-vis random noise) remains highly suboptimal, which we strengthen in this paper. When the unknown matrix is well-conditioned, incoherent, and of constant rank, we demonstrate that a principled convex program achieves near-optimal statistical accuracy, in terms of both the Euclidean loss and the ℓ∞\ell_{\infty} loss. All of this happens even when nearly a constant fraction of observations are corrupted by outliers with arbitrary magnitudes. The key analysis idea lies in bridging the convex program in use and an auxiliary nonconvex optimization algorithm, and hence the title of this paper

    Algorithms and Theory for Robust PCA and Phase Retrieval

    Get PDF
    In this dissertation, we investigate two problems, both of which require the recovery of unknowns from measurements that are potentially corrupted by outliers. The first part focuses on the problem of \emph{robust principal component analysis} (PCA), which aims to recover an unknown low-rank matrix from a corrupted and partially-observed matrix. The robust PCA problem, originally nonconvex itself, has been solved via a convex relaxation based approach \emph{principal component pursuit} (PCP) in the literature. However, previous works assume that the sparse errors uniformly spread over the entire matrix and characterize the condition under which PCP guarantees exact recovery. We generalize these results by allowing non-uniform error corruptions over the low-rank matrix and characterize the conditions on the error corruption probability of each individual entry based on the local coherence of the low-rank matrix, under which correct recovery can be guaranteed by PCP. Our results yield new insights on the graph clustering problem beyond the relevant literature. The second part of the thesis studies the phase retrieval problem, which requires recovering an unknown vector from only its magnitude measurements. Differently from the first part, we solve this problem directly via optimizing nonconvex objectives. As the nonconvex objective is often constructed in such a way that the true vector is its global optimizer, the difficulty here is to design algorithms to find the global optimizer efficiently and provably. In order to solve this problem, we propose a gradient-like algorithm named reshaped Wirtinger flow (RWF). For random Gaussian measurements, we show that RWF enjoys linear convergence to a global optimizer as long as the number of measurements is on the order of the dimension of the unknown vector. This achieves the best possible sample complexity as well as the state-of-the-art computational efficiency. Moreover, we study the phase retrieval problem when the measurements are corrupted by adversarial outliers, which models situations with missing data or sensor failures. In order to resist possible observation outliers in an oblivious manner, we propose a novel median truncation approach to modify the nonconvex approach in both the initialization and the gradient descent steps. We apply the median truncation approach to the Poisson loss and the reshaped quadratic loss respectively, and obtain two algorithms \emph{median-TWF} and \emph{median-RWF}. We show that both algorithms recover the signal from a near-optimal number of independent Gaussian measurements, even when a constant fraction of measurements is corrupted. We further show that both algorithms are stable when measurements are corrupted by both sparse arbitrary outliers and dense bounded noises. We establish our results on the performance guarantee via the development of non-trivial concentration measures of the median-related quantities, which can be of independent interest

    Robust Principal Component Analysis?

    Full text link
    This paper is about a curious phenomenon. Suppose we have a data matrix, which is the superposition of a low-rank component and a sparse component. Can we recover each component individually? We prove that under some suitable assumptions, it is possible to recover both the low-rank and the sparse components exactly by solving a very convenient convex program called Principal Component Pursuit; among all feasible decompositions, simply minimize a weighted combination of the nuclear norm and of the L1 norm. This suggests the possibility of a principled approach to robust principal component analysis since our methodology and results assert that one can recover the principal components of a data matrix even though a positive fraction of its entries are arbitrarily corrupted. This extends to the situation where a fraction of the entries are missing as well. We discuss an algorithm for solving this optimization problem, and present applications in the area of video surveillance, where our methodology allows for the detection of objects in a cluttered background, and in the area of face recognition, where it offers a principled way of removing shadows and specularities in images of faces

    Optimal Estimation and Rank Detection for Sparse Spiked Covariance Matrices

    Get PDF
    This paper considers sparse spiked covariance matrix models in the high-dimensional setting and studies the minimax estimation of the covariance matrix and the principal subspace as well as the minimax rank detection. The optimal rate of convergence for estimating the spiked covariance matrix under the spectral norm is established, which requires significantly different techniques from those for estimating other structured covariance matrices such as bandable or sparse covariance matrices. We also establish the minimax rate under the spectral norm for estimating the principal subspace, the primary object of interest in principal component analysis. In addition, the optimal rate for the rank detection boundary is obtained. This result also resolves the gap in a recent paper by Berthet and Rigollet [1] where the special case of rank one is considered
    • …
    corecore