3 research outputs found

    Остовное дерево в делимом кратном графе

    Get PDF
    In this paper, we study undirected multiple graphs of any natural multiplicity k > 1. There are edges of three types: ordinary edges, multiple edges and multi-edges. Each edge of the last two types is a union of k linked edges, which connect 2 or k + 1 vertices, correspondingly. The linked edges should be used simultaneously. If a vertex is incident to a multiple edge, it can be also incident to other multiple edges, and it can be the common ending vertex to k linked edges of a multi-edge. If a vertex is the common end of some multi-edge, it cannot be the common end of any other multi-edge. Special attention is paid to the class of divisible multiple graphs. The main peculiarity of them is a possibility to divide the graph into k parts, which are adjusted on the linked edges and which have no common edges. Each part is an ordinary graph. The definition of a multiple tree is stated and the basic properties of such trees are studied. Unlike ordinary trees, the number of edges in a multiple tree is not fixed. In the article, the evaluation of the minimum and maximum number of edges in the divisible tree is stated and proved. Next, the definitions of the spanning tree and the complete spanning tree of a multiple graph are given. The criterion of completeness of the spanning tree is proved for divisible graphs. It is also proved that a complete spanning tree exists in any divisible graph. If the multiple graph is weighted, the minimum spanning tree problem and the minimum complete spanning tree problem can be set. In the article, we suggest a heuristic algorithm for the minimum complete spanning tree problem for a divisible graph.В статье рассматриваются неориентированные кратные графы произвольной натуральной кратности k > 1. Кратный граф содержит ребра трех типов: обычные, кратные и мультиребра. Ребра последних двух типов представляют собой объединение k связанных ребер, которые соединяют 2 или k + 1 вершину соответственно. Связанные ребра могут использоваться только согласованно. Если вершина инцидентна кратному ребру, то она может быть инцидентна другим кратным ребрам, а также она может быть общим концом k связанных ребер мультиребра. Если вершина является общим концом мультиребра, то она не может быть общим концом никакого другого мультиребра. Особое внимание уделяется классу делимых кратных графов, которые отличаются возможностью выделения k частей, согласованных на всех связанных ребрах и не содержащих общих ребер. Каждая из частей является обычным графом. Вводится понятие кратного дерева, определяюся его основные свойства. В отличие от обычных деревьев количество ребер в кратных деревьях не фиксировано. Для делимых деревьев в работе приводится и обосновывается оценка минимального и максимального количества ребер. Далее определяются понятия остовного дерева и полного остовного дерева. Для делимых графов доказывается критерий полноты остовного дерева. Также доказано, что полное остовное дерево всегда существует в делимом графе. Если кратный граф является взвешенным, то для него можно поставить задачу о минимальном остовном дереве, а также о минимальном полном остовном дереве. В работе предложен эвристический алгоритм поиска минимального полного остовного дерева в делимом графе

    The Spanning Tree of a Divisible Multiple Graph

    No full text
    In this paper, we study undirected multiple graphs of any natural multiplicity k > 1. There are edges of three types: ordinary edges, multiple edges and multi-edges. Each edge of the last two types is a union of k linked edges, which connect 2 or k + 1 vertices, correspondingly. The linked edges should be used simultaneously. If a vertex is incident to a multiple edge, it can be also incident to other multiple edges, and it can be the common ending vertex to k linked edges of a multi-edge. If a vertex is the common end of some multi-edge, it cannot be the common end of any other multi-edge. Special attention is paid to the class of divisible multiple graphs. The main peculiarity of them is a possibility to divide the graph into k parts, which are adjusted on the linked edges and which have no common edges. Each part is an ordinary graph. The definition of a multiple tree is stated and the basic properties of such trees are studied. Unlike ordinary trees, the number of edges in a multiple tree is not fixed. In the article, the evaluation of the minimum and maximum number of edges in the divisible tree is stated and proved. Next, the definitions of the spanning tree and the complete spanning tree of a multiple graph are given. The criterion of completeness of the spanning tree is proved for divisible graphs. It is also proved that a complete spanning tree exists in any divisible graph. If the multiple graph is weighted, the minimum spanning tree problem and the minimum complete spanning tree problem can be set. In the article, we suggest a heuristic algorithm for the minimum complete spanning tree problem for a divisible graph

    The Spanning Tree of a Divisible Multiple Graph

    No full text
    corecore