26 research outputs found

    Bounds for avalanche critical values of the Bak-Sneppen model

    Full text link
    We study the Bak-Sneppen model on locally finite transitive graphs GG, in particular on Z^d and on T_Delta, the regular tree with common degree Delta. We show that the avalanches of the Bak-Sneppen model dominate independent site percolation, in a sense to be made precise. Since avalanches of the Bak-Sneppen model are dominated by a simple branching process, this yields upper and lower bounds for the so-called avalanche critical value pcBS(G)p_c^{BS}(G). Our main results imply that 1/(Delta+1) <= \leq p_c^{BS}(T_Delta) \leq 1/(Delta -1),andthat, and that 1/(2d+1)\leq p_c^{BS}(Z^d)\leq 1/(2d)+ 1/(2d)^2+O(d^{-3}), as d\to\infty.Comment: 19 page

    Anisotropic percolation in high dimensions: the non-oriented case

    Full text link
    We consider inhomogeneous non-oriented Bernoulli bond percolation on Zd\Z^d, where each edge has a parameter, depending on its direction. We prove that, under certain conditions, if the sum of the parameters is strictly greater than 1/2, we have percolation for sufficiently high dimensions. The main tool is a dynamical coupling between the models in different dimensions with different set of parameters

    Percolation on nonunimodular transitive graphs

    Full text link
    We extend some of the fundamental results about percolation on unimodular nonamenable graphs to nonunimodular graphs. We show that they cannot have infinitely many infinite clusters at critical Bernoulli percolation. In the case of heavy clusters, this result has already been established, but it also follows from one of our results. We give a general necessary condition for nonunimodular graphs to have a phase with infinitely many heavy clusters. We present an invariant spanning tree with pc=1p_c=1 on some nonunimodular graph. Such trees cannot exist for nonamenable unimodular graphs. We show a new way of constructing nonunimodular graphs that have properties more peculiar than the ones previously known.Comment: Published at http://dx.doi.org/10.1214/009117906000000494 in the Annals of Probability (http://www.imstat.org/aop/) by the Institute of Mathematical Statistics (http://www.imstat.org

    New Lower Bounds on the Self-Avoiding-Walk Connective Constant

    Full text link
    We give an elementary new method for obtaining rigorous lower bounds on the connective constant for self-avoiding walks on the hypercubic lattice ZdZ^d. The method is based on loop erasure and restoration, and does not require exact enumeration data. Our bounds are best for high dd, and in fact agree with the first four terms of the 1/d1/d expansion for the connective constant. The bounds are the best to date for dimensions d3d \geq 3, but do not produce good results in two dimensions. For d=3,4,5,6d=3,4,5,6, respectively, our lower bound is within 2.4\%, 0.43\%, 0.12\%, 0.044\% of the value estimated by series extrapolation.Comment: 35 pages, 388480 bytes Postscript, NYU-TH-93/02/0

    Bounds on the Complex Zeros of (Di)Chromatic Polynomials and Potts-Model Partition Functions

    Get PDF
    I show that there exist universal constants C(r)<C(r) < \infty such that, for all loopless graphs GG of maximum degree r\le r, the zeros (real or complex) of the chromatic polynomial PG(q)P_G(q) lie in the disc q<C(r)|q| < C(r). Furthermore, C(r)7.963906...rC(r) \le 7.963906... r. This result is a corollary of a more general result on the zeros of the Potts-model partition function ZG(q,ve)Z_G(q, {v_e}) in the complex antiferromagnetic regime 1+ve1|1 + v_e| \le 1. The proof is based on a transformation of the Whitney-Tutte-Fortuin-Kasteleyn representation of ZG(q,ve)Z_G(q, {v_e}) to a polymer gas, followed by verification of the Dobrushin-Koteck\'y-Preiss condition for nonvanishing of a polymer-model partition function. I also show that, for all loopless graphs GG of second-largest degree r\le r, the zeros of PG(q)P_G(q) lie in the disc q<C(r)+1|q| < C(r) + 1. Along the way, I give a simple proof of a generalized (multivariate) Brown-Colbourn conjecture on the zeros of the reliability polynomial for the special case of series-parallel graphs.Comment: 47 pages (LaTeX). Revised version contains slightly simplified proofs of Propositions 4.2 and 4.5. Version 3 fixes a silly error in my proof of Proposition 4.1, and adds related discussion. To appear in Combinatorics, Probability & Computin

    Expansion for the critical point of site percolation: the first three terms

    Get PDF
    We expand the critical point for site percolation on the dd-dimensional hypercubic lattice in terms of inverse powers of 2d2d, and we obtain the first three terms rigorously. This is achieved using the lace expansion.Comment: 22 page

    Conformally invariant scaling limits in planar critical percolation

    Full text link
    This is an introductory account of the emergence of conformal invariance in the scaling limit of planar critical percolation. We give an exposition of Smirnov's theorem (2001) on the conformal invariance of crossing probabilities in site percolation on the triangular lattice. We also give an introductory account of Schramm-Loewner evolutions (SLE(k)), a one-parameter family of conformally invariant random curves discovered by Schramm (2000). The article is organized around the aim of proving the result, due to Smirnov (2001) and to Camia and Newman (2007), that the percolation exploration path converges in the scaling limit to chordal SLE(6). No prior knowledge is assumed beyond some general complex analysis and probability theory.Comment: 55 pages, 10 figure
    corecore