4,077 research outputs found

    Language Modeling with Deep Transformers

    Full text link
    We explore deep autoregressive Transformer models in language modeling for speech recognition. We focus on two aspects. First, we revisit Transformer model configurations specifically for language modeling. We show that well configured Transformer models outperform our baseline models based on the shallow stack of LSTM recurrent neural network layers. We carry out experiments on the open-source LibriSpeech 960hr task, for both 200K vocabulary word-level and 10K byte-pair encoding subword-level language modeling. We apply our word-level models to conventional hybrid speech recognition by lattice rescoring, and the subword-level models to attention based encoder-decoder models by shallow fusion. Second, we show that deep Transformer language models do not require positional encoding. The positional encoding is an essential augmentation for the self-attention mechanism which is invariant to sequence ordering. However, in autoregressive setup, as is the case for language modeling, the amount of information increases along the position dimension, which is a positional signal by its own. The analysis of attention weights shows that deep autoregressive self-attention models can automatically make use of such positional information. We find that removing the positional encoding even slightly improves the performance of these models.Comment: To appear in the proceedings of INTERSPEECH 201

    Enriching Rare Word Representations in Neural Language Models by Embedding Matrix Augmentation

    Full text link
    The neural language models (NLM) achieve strong generalization capability by learning the dense representation of words and using them to estimate probability distribution function. However, learning the representation of rare words is a challenging problem causing the NLM to produce unreliable probability estimates. To address this problem, we propose a method to enrich representations of rare words in pre-trained NLM and consequently improve its probability estimation performance. The proposed method augments the word embedding matrices of pre-trained NLM while keeping other parameters unchanged. Specifically, our method updates the embedding vectors of rare words using embedding vectors of other semantically and syntactically similar words. To evaluate the proposed method, we enrich the rare street names in the pre-trained NLM and use it to rescore 100-best hypotheses output from the Singapore English speech recognition system. The enriched NLM reduces the word error rate by 6% relative and improves the recognition accuracy of the rare words by 16% absolute as compared to the baseline NLM.Comment: 5 pages, 2 figures, accepted to INTERSPEECH 201

    Advances in All-Neural Speech Recognition

    Full text link
    This paper advances the design of CTC-based all-neural (or end-to-end) speech recognizers. We propose a novel symbol inventory, and a novel iterated-CTC method in which a second system is used to transform a noisy initial output into a cleaner version. We present a number of stabilization and initialization methods we have found useful in training these networks. We evaluate our system on the commonly used NIST 2000 conversational telephony test set, and significantly exceed the previously published performance of similar systems, both with and without the use of an external language model and decoding technology

    Optimization of supply diversity for the self-assembly of simple objects in two and three dimensions

    Full text link
    The field of algorithmic self-assembly is concerned with the design and analysis of self-assembly systems from a computational perspective, that is, from the perspective of mathematical problems whose study may give insight into the natural processes through which elementary objects self-assemble into more complex ones. One of the main problems of algorithmic self-assembly is the minimum tile set problem (MTSP), which asks for a collection of types of elementary objects (called tiles) to be found for the self-assembly of an object having a pre-established shape. Such a collection is to be as concise as possible, thus minimizing supply diversity, while satisfying a set of stringent constraints having to do with the termination and other properties of the self-assembly process from its tile types. We present a study of what we think is the first practical approach to MTSP. Our study starts with the introduction of an evolutionary heuristic to tackle MTSP and includes results from extensive experimentation with the heuristic on the self-assembly of simple objects in two and three dimensions. The heuristic we introduce combines classic elements from the field of evolutionary computation with a problem-specific variant of Pareto dominance into a multi-objective approach to MTSP.Comment: Minor typos correcte

    On the efficient numerical solution of lattice systems with low-order couplings

    Full text link
    We apply the Quasi Monte Carlo (QMC) and recursive numerical integration methods to evaluate the Euclidean, discretized time path-integral for the quantum mechanical anharmonic oscillator and a topological quantum mechanical rotor model. For the anharmonic oscillator both methods outperform standard Markov Chain Monte Carlo methods and show a significantly improved error scaling. For the quantum mechanical rotor we could, however, not find a successful way employing QMC. On the other hand, the recursive numerical integration method works extremely well for this model and shows an at least exponentially fast error scaling
    • …
    corecore