27 research outputs found

    An old approach to the giant component problem

    Full text link
    In 1998, Molloy and Reed showed that, under suitable conditions, if a sequence of degree sequences converges to a probability distribution DD, then the size of the largest component in corresponding nn-vertex random graph is asymptotically ρ(D)n\rho(D)n, where ρ(D)\rho(D) is a constant defined by the solution to certain equations that can be interpreted as the survival probability of a branching process associated to DD. There have been a number of papers strengthening this result in various ways; here we prove a strong form of the result (with exponential bounds on the probability of large deviations) under minimal conditions.Comment: 24 pages; only minor change

    Critical behavior in inhomogeneous random graphs

    Get PDF
    We study the critical behavior of inhomogeneous random graphs where edges are present independently but with unequal edge occupation probabilities. The edge probabilities are moderated by vertex weights, and are such that the degree of vertex i is close in distribution to a Poisson random variable with parameter w_i, where w_i denotes the weight of vertex i. We choose the weights such that the weight of a uniformly chosen vertex converges in distribution to a limiting random variable W, in which case the proportion of vertices with degree k is close to the probability that a Poisson random variable with random parameter W takes the value k. We pay special attention to the power-law case, in which P(W\geq k) is proportional to k^{-(\tau-1)} for some power-law exponent \tau>3, a property which is then inherited by the asymptotic degree distribution. We show that the critical behavior depends sensitively on the properties of the asymptotic degree distribution moderated by the asymptotic weight distribution W. Indeed, when P(W\geq k) \leq ck^{-(\tau-1)} for all k\geq 1 and some \tau>4 and c>0, the largest critical connected component in a graph of size n is of order n^{2/3}, as on the Erd\H{o}s-R\'enyi random graph. When, instead, P(W\geq k)=ck^{-(\tau-1)}(1+o(1)) for k large and some \tau\in (3,4) and c>0, the largest critical connected component is of the much smaller order n^{(\tau-2)/(\tau-1)}.Comment: 26 page

    The component sizes of a critical random graph with given degree sequence

    Full text link
    Consider a critical random multigraph Gn\mathcal{G}_n with nn vertices constructed by the configuration model such that its vertex degrees are independent random variables with the same distribution ν\nu (criticality means that the second moment of ν\nu is finite and equals twice its first moment). We specify the scaling limits of the ordered sequence of component sizes of Gn\mathcal{G}_n as nn tends to infinity in different cases. When ν\nu has finite third moment, the components sizes rescaled by n2/3n^{-2/3} converge to the excursion lengths of a Brownian motion with parabolic drift above past minima, whereas when ν\nu is a power law distribution with exponent γ(3,4)\gamma\in(3,4), the components sizes rescaled by n(γ2)/(γ1)n^{-(\gamma -2)/(\gamma-1)} converge to the excursion lengths of a certain nontrivial drifted process with independent increments above past minima. We deduce the asymptotic behavior of the component sizes of a critical random simple graph when ν\nu has finite third moment.Comment: Published in at http://dx.doi.org/10.1214/13-AAP985 the Annals of Applied Probability (http://www.imstat.org/aap/) by the Institute of Mathematical Statistics (http://www.imstat.org
    corecore