362 research outputs found

    On the validity of memristor modeling in the neural network literature

    Full text link
    An analysis of the literature shows that there are two types of non-memristive models that have been widely used in the modeling of so-called "memristive" neural networks. Here, we demonstrate that such models have nothing in common with the concept of memristive elements: they describe either non-linear resistors or certain bi-state systems, which all are devices without memory. Therefore, the results presented in a significant number of publications are at least questionable, if not completely irrelevant to the actual field of memristive neural networks

    pth moment exponential stability of stochastic fuzzy Cohen–Grossberg neural networks with discrete and distributed delays

    Get PDF
    In this paper, stochastic fuzzy Cohen–Grossberg neural networks with discrete and distributed delays are investigated. By using Lyapunov function and the Ito differential formula, some sufficient conditions for the pth moment exponential stability of such stochastic fuzzy Cohen–Grossberg neural networks with discrete and distributed delays are established. An example is given to illustrate the feasibility of our main theoretical findings. Finally, the paper ends with a brief conclusion. Methodology and achieved results is to be presented

    Finite-time Anti-synchronization of Memristive Stochastic BAM Neural Networks with Probabilistic Time-varying Delays

    Get PDF
    This paper investigates the drive-response finite-time anti-synchronization for memristive bidirectional associative memory neural networks (MBAMNNs). Firstly, a class of MBAMNNs with mixed probabilistic time-varying delays and stochastic perturbations is first formulated and analyzed in this paper. Secondly, an nonlinear control law is constructed and utilized to guarantee drive-response finite-time anti-synchronization of the neural networks. Thirdly, by employing some inequality technique and constructing an appropriate Lyapunov function, some anti-synchronization criteria are derived. Finally, a number simulation is provided to demonstrate the effectiveness of the proposed mechanism

    New synchronization criteria for an array of neural networks with hybrid coupling and time-varying delays

    Get PDF
    This paper is concerned with the global exponential synchronization for an array of hybrid coupled neural networks with time-varying leakage delay, discrete and distributed delays. Applying a novel Lyapunov functional and the property of outer coupling matrices of the neural networks, sufficient conditions are obtained for the global exponential synchronization of the system. The derived synchronization criteria are closely related with the time-varying delays and the coupling structure of the networks. The maximal allowable upper bounds of the time-varying delays can be obtained guaranteeing the global synchronization for the neural networks. The method we adopt in this paper is different from the commonly used linear matrix inequality (LMI) technique, and our synchronization conditions are new, which are easy to check in comparison with the previously reported LMI-based ones. Some examples are given to show the effectiveness of the obtained theoretical results

    A switching control for finite-time synchronization of memristor-based BAM neural networks with stochastic disturbances

    Get PDF
    This paper deals with the finite-time stochastic synchronization for a class of memristorbased bidirectional associative memory neural networks (MBAMNNs) with time-varying delays and stochastic disturbances. Firstly, based on the physical property of memristor and the circuit of MBAMNNs, a MBAMNNs model with more reasonable switching conditions is established. Then, based on the theory of Filippov’s solution, by using Lyapunov–Krasovskii functionals and stochastic analysis technique, a sufficient condition is given to ensure the finite-time stochastic synchronization of MBAMNNs with a certain controller. Next, by a further discussion, an errordependent switching controller is given to shorten the stochastic settling time. Finally, numerical simulations are carried out to illustrate the effectiveness of theoretical results

    Global exponential convergence of delayed inertial Cohen–Grossberg neural networks

    Get PDF
    In this paper, the exponential convergence of delayed inertial Cohen–Grossberg neural networks (CGNNs) is studied. Two methods are adopted to discuss the inertial CGNNs, one is expressed as two first-order differential equations by selecting a variable substitution, and the other does not change the order of the system based on the nonreduced-order method. By establishing appropriate Lyapunov function and using inequality techniques, sufficient conditions are obtained to ensure that the discussed model converges exponentially to a ball with the prespecified convergence rate. Finally, two simulation examples are proposed to illustrate the validity of the theorem results

    Global attractive periodic solutions of neutral-type neural networks with delays in the leakage terms

    Get PDF
    In this paper, we introduce a class of neutral-type neural networks with delay in the leakage terms. Using coincidence degree theory, Lyapunov functional method and the properties of neutral operator, we establish some new sufficient criteria for the existence and global attractiveness of periodic solutions. Finally, an example demonstrates our findings

    Exponential state estimation for competitive neural network via stochastic sampled-data control with packet losses

    Get PDF
    This paper investigates the exponential state estimation problem for competitive neural networks via stochastic sampled-data control with packet losses. Based on this strategy, a switched system model is used to describe packet dropouts for the error system. In addition, transmittal delays between neurons are also considered. Instead of the continuous measurement, the sampled measurement is used to estimate the neuron states, and a sampled-data estimator with probabilistic sampling in two sampling periods is proposed. Then the estimator is designed in terms of the solution to a set of linear matrix inequalities (LMIs), which can be solved by using available software. When the missing of control packet occurs, some sufficient conditions are obtained to guarantee that the exponentially stable of the error system by means of constructing an appropriate Lyapunov function and using the average dwell-time technique. Finally, a numerical example is given to show the effectiveness of the proposed method
    • …
    corecore