217,424 research outputs found

    The Application of Dominance-based Rough Sets Theory to Evaluation of Transportation Systems

    Get PDF
    AbstractThe paper presents an original procedure of evaluation of a transportation system, resulting in its assignment into a predefined class, representing the overall standard of the considered system and the level of transportation service. The method relies on the application of the dominance-based rough set theory (DRST), allows for thorough data exploration, evaluation of informational content of the considered characteristics and generation of certain decision rules that support t he evaluation process. In the analysis different characteristics (criteria and attributes) describing various aspects of a transportation system operations are taken into account. The assignment of a transportation system to a specific quality class is performed based on the values of characteristics which are compared with the evaluation pattern, i.e. the set of decision rules generated through the analysis of customers’ opinions and expectations concerning a transportation system. The method is composed of three major steps, including: 1) identification of the most important characteristics, 2) generation of the evaluation pattern, and 3) assignment of the transportation system to the appropriate class. In the evaluation process five key components of a transportation system, including: transportation means, human resources, informational resources, transportation infrastructure and technical equipment as well as organizational rules are considered

    Active Clothing Material Perception using Tactile Sensing and Deep Learning

    Full text link
    Humans represent and discriminate the objects in the same category using their properties, and an intelligent robot should be able to do the same. In this paper, we build a robot system that can autonomously perceive the object properties through touch. We work on the common object category of clothing. The robot moves under the guidance of an external Kinect sensor, and squeezes the clothes with a GelSight tactile sensor, then it recognizes the 11 properties of the clothing according to the tactile data. Those properties include the physical properties, like thickness, fuzziness, softness and durability, and semantic properties, like wearing season and preferred washing methods. We collect a dataset of 153 varied pieces of clothes, and conduct 6616 robot exploring iterations on them. To extract the useful information from the high-dimensional sensory output, we applied Convolutional Neural Networks (CNN) on the tactile data for recognizing the clothing properties, and on the Kinect depth images for selecting exploration locations. Experiments show that using the trained neural networks, the robot can autonomously explore the unknown clothes and learn their properties. This work proposes a new framework for active tactile perception system with vision-touch system, and has potential to enable robots to help humans with varied clothing related housework.Comment: ICRA 2018 accepte

    On Advanced Mobility Concepts for Intelligent Planetary Surface Exploration

    Get PDF
    Surface exploration by wheeled rovers on Earth's Moon (the two Lunokhods) and Mars (Nasa's Sojourner and the two MERs) have been followed since many years already very suc-cessfully, specifically concerning operations over long time. However, despite of this success, the explored surface area was very small, having in mind a total driving distance of about 8 km (Spirit) and 21 km (Opportunity) over 6 years of operation. Moreover, ESA will send its ExoMars rover in 2018 to Mars, and NASA its MSL rover probably this year. However, all these rovers are lacking sufficient on-board intelligence in order to overcome longer dis-tances, driving much faster and deciding autonomously on path planning for the best trajec-tory to follow. In order to increase the scientific output of a rover mission it seems very nec-essary to explore much larger surface areas reliably in much less time. This is the main driver for a robotics institute to combine mechatronics functionalities to develop an intelligent mo-bile wheeled rover with four or six wheels, and having specific kinematics and locomotion suspension depending on the operational terrain of the rover to operate. DLR's Robotics and Mechatronics Center has a long tradition in developing advanced components in the field of light-weight motion actuation, intelligent and soft manipulation and skilled hands and tools, perception and cognition, and in increasing the autonomy of any kind of mechatronic systems. The whole design is supported and is based upon detailed modeling, optimization, and simula-tion tasks. We have developed efficient software tools to simulate the rover driveability per-formance on various terrain characteristics such as soft sandy and hard rocky terrains as well as on inclined planes, where wheel and grouser geometry plays a dominant role. Moreover, rover optimization is performed to support the best engineering intuitions, that will optimize structural and geometric parameters, compare various kinematics suspension concepts, and make use of realistic cost functions like mass and consumed energy minimization, static sta-bility, and more. For self-localization and safe navigation through unknown terrain we make use of fast 3D stereo algorithms that were successfully used e.g. in unmanned air vehicle ap-plications and on terrestrial mobile systems. The advanced rover design approach is applica-ble for lunar as well as Martian surface exploration purposes. A first mobility concept ap-proach for a lunar vehicle will be presented

    Towards an Autonomous Walking Robot for Planetary Surfaces

    Get PDF
    In this paper, recent progress in the development of the DLR Crawler - a six-legged, actively compliant walking robot prototype - is presented. The robot implements a walking layer with a simple tripod and a more complex biologically inspired gait. Using a variety of proprioceptive sensors, different reflexes for reactively crossing obstacles within the walking height are realised. On top of the walking layer, a navigation layer provides the ability to autonomously navigate to a predefined goal point in unknown rough terrain using a stereo camera. A model of the environment is created, the terrain traversability is estimated and an optimal path is planned. The difficulty of the path can be influenced by behavioral parameters. Motion commands are sent to the walking layer and the gait pattern is switched according to the estimated terrain difficulty. The interaction between walking layer and navigation layer was tested in different experimental setups

    The perception of materials through oral sensation

    Get PDF
    This paper presents the results of a multimodal study of oral perception conducted with a set of material samples made from metals, polymers and woods, in which both the somatosensory and taste factors were examined. A multidimensional scaling analysis coupled with subjective attribute ratings was performed to assess these factors both qualitatively and quantitatively. The perceptual somatosensory factors of warmth, hardness and roughness dominated over the basic taste factors, and roughness was observed to be a less significant sensation compared to touch-only experiments. The perceptual somatosensory ratings were compared directly with physical property data in order to assess the correlation between the perceived properties and measured physical properties. In each case, a strong correlation was observed, suggesting that physical properties may be useful in industrial design for predicting oral perception
    • 

    corecore