1,604 research outputs found

    Role of torque in haptic perception of virtual objects

    Get PDF
    Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 2001.Includes bibliographical references (p. 87-88).An experimental study was performed to determine the role of torque feedback in haptic perception of object location within virtual environments. The experimental setup consisted of two Phantom haptic interfaces connected by a common stylus and a raybased rendering technique for modeling the interactions between the user-controlled stylus and the virtual environment. Subjects were asked to identify 7 locations of a virtual object under various force display conditions, which ranged from force feedback only at the stylus tip to accurate force and torque feedback. Subjects' ability to determine the location of a real object was also examined in order to establish the effectiveness of the hardware and software utilized in the study. In order to obtain their best performance, subjects were trained in each case with correct-answer feedback. Results indicate that the most significant improvement in perception occurred during the first training session. The accuracy of subjects' haptic perception of virtual object location was the same as the perception of real object position when full force and torque feedback were provided, thus validating the realism of the simulated haptic environment. Estimated percentage JND for these conditions, ranged from approximately 20% for the nearest objects to 12% for the farthest objects. The information transmitted (IT) for these conditions were also the same, at approximately 1 bit (out of a maximum of 2.81 bits). When subjects probed the virtual object by rocking against it, thus freely changing the orientation of the rod, even with forces reflected only at the front tip of the stylus, performance was the same as when true force and torque feedback were provided. However, when subjects were permitted only to tap the probe against the object, thereby limiting the motions and orientations of the rod, providing force feedback only at the tip of the stylus resulted in poor identification of object location. In this case, percentage JND ranged from 37% to 27%, while IT was .17 bits. Torque feedback and object contact with multiple probe orientations, then, provide equivalent haptic information in terms of determining object position. Denying both results in inaccurate haptic perception of object distance.by Steve Wang.S.M

    Visual-haptic interactions in multimodal virtual environments

    Get PDF
    Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 1999.Includes bibliographical references (leaves 73-75).by Wan-Chen Wu.S.M

    The Analysis of design and manufacturing tasks using haptic and immersive VR - Some case studies

    Get PDF
    The use of virtual reality in interactive design and manufacture has been researched extensively but the practical application of this technology in industry is still very much in its infancy. This is surprising as one would have expected that, after some 30 years of research commercial applications of interactive design or manufacturing planning and analysis would be widespread throughout the product design domain. One of the major but less well known advantages of VR technology is that logging the user gives a great deal of rich data which can be used to automatically generate designs or manufacturing instructions, analyse design and manufacturing tasks, map engineering processes and, tentatively, acquire expert knowledge. The authors feel that the benefits of VR in these areas have not been fully disseminated to the wider industrial community and - with the advent of cheaper PC-based VR solutions - perhaps a wider appreciation of the capabilities of this type of technology may encourage companies to adopt VR solutions for some of their product design processes. With this in mind, this paper will describe in detail applications of haptics in assembly demonstrating how user task logging can lead to the analysis of design and manufacturing tasks at a level of detail not previously possible as well as giving usable engineering outputs. The haptic 3D VR study involves the use of a Phantom and 3D system to analyse and compare this technology against real-world user performance. This work demonstrates that the detailed logging of tasks in a virtual environment gives considerable potential for understanding how virtual tasks can be mapped onto their real world equivalent as well as showing how haptic process plans can be generated in a similar manner to the conduit design and assembly planning HMD VR tool reported in PART A. The paper concludes with a view as to how the authors feel that the use of VR systems in product design and manufacturing should evolve in order to enable the industrial adoption of this technology in the future

    A Novel Haptic Simulator for Evaluating and Training Salient Force-Based Skills for Laparoscopic Surgery

    Get PDF
    Laparoscopic surgery has evolved from an \u27alternative\u27 surgical technique to currently being considered as a mainstream surgical technique. However, learning this complex technique holds unique challenges to novice surgeons due to their \u27distance\u27 from the surgical site. One of the main challenges in acquiring laparoscopic skills is the acquisition of force-based or haptic skills. The neglect of popular training methods (e.g., the Fundamentals of Laparoscopic Surgery, i.e. FLS, curriculum) in addressing this aspect of skills training has led many medical skills professionals to research new, efficient methods for haptic skills training. The overarching goal of this research was to demonstrate that a set of simple, simulator-based haptic exercises can be developed and used to train users for skilled application of forces with surgical tools. A set of salient or core haptic skills that underlie proficient laparoscopic surgery were identified, based on published time-motion studies. Low-cost, computer-based haptic training simulators were prototyped to simulate each of the identified salient haptic skills. All simulators were tested for construct validity by comparing surgeons\u27 performance on the simulators with the performance of novices with no previous laparoscopic experience. An integrated, \u27core haptic skills\u27 simulator capable of rendering the three validated haptic skills was built. To examine the efficacy of this novel salient haptic skills training simulator, novice participants were tested for training improvements in a detailed study. Results from the study demonstrated that simulator training enabled users to significantly improve force application for all three haptic tasks. Research outcomes from this project could greatly influence surgical skills simulator design, resulting in more efficient training

    The Design of a Haptic Device for Training and Evaluating Surgeon and Novice Laparoscopic Movement Skills

    Get PDF
    As proper levels of force application are necessary to ensure patient safety, and training hours with an expert on live subjects are difficult, enhanced computer-based training is needed to teach the next generation of surgeons. Considering the role of touch in surgery, there is a need for a device capable of discerning the haptic ability of surgical trainees. This need is amplified by minimally invasive surgical techniques where a surgeon\u27s sense of tissue properties comes not directly through their own hands but indirectly through the tools. A haptic device capable of producing a realistic range of forces and motions that can be used to test the ability of users to replicate salient forces in specific maneuvers is proposed. This device also provides the opportunity to use inexpensive haptic trainers to educate surgeons about proper force application. A novel haptic device was designed and built to provide a simplified analogy of the forces and torques felt during free tool motion and constrained pushing, sweep with laparoscopic instruments. The device is realized as a single-degree-of-freedom robotic system controlled using real-time computer hardware and software. The details of the device design and the results of testing the design against the specifications are presented. A significant achievement in the design is the use of a two-camera vision system to sense the user placement of the input device. The capability of the device as a first-order screening tool to distinguish between novices and expert surgeons is described

    Mechanical design optimization for multi-finger haptic devices applied to virtual grasping manipulation

    Get PDF
    This paper describes the design of a modular multi-finger haptic device for virtual object manipulation. Mechanical structures are based on one module per finger and can be scaled up to three fingers. Mechanical configurations for two and three fingers are based on the use of one and two redundant axes, respectively. As demonstrated, redundant axes significantly increase workspace and prevent link collisions, which is their main asset with respect to other multi-finger haptic devices. The location of redundant axes and link dimensions have been optimized in order to guarantee a proper workspace, manipulability, force capability, and inertia for the device. The mechanical haptic device design and a thimble adaptable to different finger sizes have also been developed for virtual object manipulation

    Haptics Rendering and Applications

    Get PDF
    There has been significant progress in haptic technologies but the incorporation of haptics into virtual environments is still in its infancy. A wide range of the new society's human activities including communication, education, art, entertainment, commerce and science would forever change if we learned how to capture, manipulate and reproduce haptic sensory stimuli that are nearly indistinguishable from reality. For the field to move forward, many commercial and technological barriers need to be overcome. By rendering how objects feel through haptic technology, we communicate information that might reflect a desire to speak a physically- based language that has never been explored before. Due to constant improvement in haptics technology and increasing levels of research into and development of haptics-related algorithms, protocols and devices, there is a belief that haptics technology has a promising future

    COMPARATIVE STUDY OF HAPTIC AND VISUAL FEEDBACK FOR KINESTHETIC TRAINING TASKS

    Get PDF
    Haptics is the sense of simulating and applying the sense of human touch. Application of touch sensations is done with haptic interface devices. The past few years has seen the development of several haptic interface devices with a wide variety of technologies used in their design. This thesis introduces haptic technologies and includes a survey of haptic interface devices and technologies. An improvement in simulating and applying touch sensation when using the Quanser Haptic Wand with proSense is suggested in this work using a novel five degree-of-freedom algorithm. This approach uses two additional torques to enhance the three degree-of-freedom of force feedback currently available with these products. Modern surgical trainers for performing laparoscopic surgery are incorporating haptic feedback in addition to visual feedback for training. This work presents a quantitative comparison of haptic versus visual training. One of the key results of the study is that haptic feedback is better than visual feedback for kinesthetic navigation tasks

    Kinesthetic Haptics Sensing and Discovery with Bilateral Teleoperation Systems

    Get PDF
    In the mechanical engineering field of robotics, bilateral teleoperation is a classic but still increasing research topic. In bilateral teleoperation, a human operator moves the master manipulator, and a slave manipulator is controlled to follow the motion of the master in a remote, potentially hostile environment. This dissertation focuses on kinesthetic perception analysis in teleoperation systems. Design of the controllers of the systems is studied as the influential factor of this issue. The controllers that can provide different force tracking capability are compared using the same experimental protocol. A 6 DOF teleoperation system is configured as the system testbed. An innovative master manipulator is developed and a 7 DOF redundant manipulator is used as the slave robot. A singularity avoidance inverse kinematics algorithm is developed to resolve the redundancy of the slave manipulator. An experimental protocol is addressed and three dynamics attributes related to kineshtetic feedback are investigated: weight, center of gravity and inertia. The results support our hypothesis: the controller that can bring a better force feedback can improve the performance in the experiments
    • …
    corecore