26 research outputs found

    The Role of Degree Distribution in Shaping the Dynamics in Networks of Sparsely Connected Spiking Neurons

    Get PDF
    Neuronal network models often assume a fixed probability of connection between neurons. This assumption leads to random networks with binomial in-degree and out-degree distributions which are relatively narrow. Here I study the effect of broad degree distributions on network dynamics by interpolating between a binomial and a truncated power-law distribution for the in-degree and out-degree independently. This is done both for an inhibitory network (I network) as well as for the recurrent excitatory connections in a network of excitatory and inhibitory neurons (EI network). In both cases increasing the width of the in-degree distribution affects the global state of the network by driving transitions between asynchronous behavior and oscillations. This effect is reproduced in a simplified rate model which includes the heterogeneity in neuronal input due to the in-degree of cells. On the other hand, broadening the out-degree distribution is shown to increase the fraction of common inputs to pairs of neurons. This leads to increases in the amplitude of the cross-correlation (CC) of synaptic currents. In the case of the I network, despite strong oscillatory CCs in the currents, CCs of the membrane potential are low due to filtering and reset effects, leading to very weak CCs of the spike-count. In the asynchronous regime of the EI network, broadening the out-degree increases the amplitude of CCs in the recurrent excitatory currents, while CC of the total current is essentially unaffected as are pairwise spiking correlations. This is due to a dynamic balance between excitatory and inhibitory synaptic currents. In the oscillatory regime, changes in the out-degree can have a large effect on spiking correlations and even on the qualitative dynamical state of the network

    Regular graphs maximize the variability of random neural networks

    Full text link
    In this work we study the dynamics of systems composed of numerous interacting elements interconnected through a random weighted directed graph, such as models of random neural networks. We develop an original theoretical approach based on a combination of a classical mean-field theory originally developed in the context of dynamical spin-glass models, and the heterogeneous mean-field theory developed to study epidemic propagation on graphs. Our main result is that, surprisingly, increasing the variance of the in-degree distribution does not result in a more variable dynamical behavior, but on the contrary that the most variable behaviors are obtained in the regular graph setting. We further study how the dynamical complexity of the attractors is influenced by the statistical properties of the in-degree distribution

    The role of interconnected hub neurons in cortical dynamics

    Full text link
    corecore