85 research outputs found

    On inverted index compression for search engine efficiency

    Get PDF
    Efficient access to the inverted index data structure is a key aspect for a search engine to achieve fast response times to users’ queries . While the performance of an information retrieval (IR) system can be enhanced through the compression of its posting lists, there is little recent work in the literature that thoroughly compares and analyses the performance of modern integer compression schemes across different types of posting information (document ids, frequencies, positions). In this paper, we experiment with different modern integer compression algorithms, integrating these into a modern IR system. Through comprehensive experiments conducted on two large, widely used document corpora and large query sets, our results show the benefit of compression for different types of posting information to the space- and time-efficiency of the search engine. Overall, we find that the simple Frame of Reference compression scheme results in the best query response times for all types of posting information. Moreover, we observe that the frequency and position posting information in Web corpora that have large volumes of anchor text are more challenging to compress, yet compression is beneficial in reducing average query response times

    Entropy and Graph Based Modelling of Document Coherence using Discourse Entities: An Application

    Full text link
    We present two novel models of document coherence and their application to information retrieval (IR). Both models approximate document coherence using discourse entities, e.g. the subject or object of a sentence. Our first model views text as a Markov process generating sequences of discourse entities (entity n-grams); we use the entropy of these entity n-grams to approximate the rate at which new information appears in text, reasoning that as more new words appear, the topic increasingly drifts and text coherence decreases. Our second model extends the work of Guinaudeau & Strube [28] that represents text as a graph of discourse entities, linked by different relations, such as their distance or adjacency in text. We use several graph topology metrics to approximate different aspects of the discourse flow that can indicate coherence, such as the average clustering or betweenness of discourse entities in text. Experiments with several instantiations of these models show that: (i) our models perform on a par with two other well-known models of text coherence even without any parameter tuning, and (ii) reranking retrieval results according to their coherence scores gives notable performance gains, confirming a relation between document coherence and relevance. This work contributes two novel models of document coherence, the application of which to IR complements recent work in the integration of document cohesiveness or comprehensibility to ranking [5, 56]

    Selective Weak Supervision for Neural Information Retrieval

    Full text link
    This paper democratizes neural information retrieval to scenarios where large scale relevance training signals are not available. We revisit the classic IR intuition that anchor-document relations approximate query-document relevance and propose a reinforcement weak supervision selection method, ReInfoSelect, which learns to select anchor-document pairs that best weakly supervise the neural ranker (action), using the ranking performance on a handful of relevance labels as the reward. Iteratively, for a batch of anchor-document pairs, ReInfoSelect back propagates the gradients through the neural ranker, gathers its NDCG reward, and optimizes the data selection network using policy gradients, until the neural ranker's performance peaks on target relevance metrics (convergence). In our experiments on three TREC benchmarks, neural rankers trained by ReInfoSelect, with only publicly available anchor data, significantly outperform feature-based learning to rank methods and match the effectiveness of neural rankers trained with private commercial search logs. Our analyses show that ReInfoSelect effectively selects weak supervision signals based on the stage of the neural ranker training, and intuitively picks anchor-document pairs similar to query-document pairs.Comment: Accepted by WWW 202

    Transferring Learning To Rank Models for Web Search

    Get PDF
    ABSTRACT Learning to rank techniques provide mechanisms for combining document feature values into learned models that produce effective rankings. However, issues concerning the transferability of learned models between different corpora or subsets of the same corpus are not yet well understood. For instance, is the importance of different feature sets consistent between subsets of a corpus, or whether a learned model obtained on a small subset of the corpus effectively transfer to the larger corpus? By formulating our experiments around two null hypotheses, in this work, we apply a full-factorial experiment design to empirically investigate these questions using the ClueWeb09 and ClueWeb12 corpora, combined with queries from the TREC Web track. Among other observations, our experiments reveal that ClueWeb09 remains an effective choice of training corpus for learning effective models for ClueWeb12, and also that the importance of query independent features varies among the ClueWeb09 and ClueWeb12 corpora. In doing so, this work contributes an important study into the transferability of learning to rank models, as well as empirically-derived best practices for effective retrieval on the ClueWeb12 corpus

    Exploiting the Bipartite Structure of Entity Grids for Document Coherence and Retrieval

    Get PDF
    International audienceDocument coherence describes how much sense text makes in terms of its logical organisation and discourse flow. Even though coherence is a relatively difficult notion to quantify precisely, it can be approximated automatically. This type of coherence modelling is not only interesting in itself, but also useful for a number of other text processing tasks, including Information Retrieval (IR), where adjusting the ranking of documents according to both their relevance and their coherence has been shown to increase retrieval effectiveness.The state of the art in unsupervised coherence modelling represents documents as bipartite graphs of sentences and discourse entities, and then projects these bipartite graphs into one–mode undirected graphs. However, one–mode projections may incur significant loss of the information present in the original bipartite structure. To address this we present three novel graph metrics that compute document coherence on the original bipartite graph of sentences and entities. Evaluation on standard settings shows that: (i) one of our coherence metrics beats the state of the art in terms of coherence accuracy; and (ii) all three of our coherence metrics improve retrieval effectiveness because, as closer analysis reveals, they capture aspects of document quality that go undetected by both keyword-based standard ranking and by spam filtering. This work contributes document coherence metrics that are theoretically principled, parameter-free, and useful to IR
    • …
    corecore