2 research outputs found

    CFA optimizer: A new and powerful algorithm inspired by Franklin's and Coulomb's laws theory for solving the economic load dispatch problems

    Full text link
    Copyright © 2018 John Wiley & Sons, Ltd. This paper presents a new efficient algorithm inspired by Franklin's and Coulomb's laws theory that is referred to as CFA algorithm, for finding the global solutions of optimal economic load dispatch problems in power systems. CFA is based on the impact of electrically charged particles on each other due to electrical attraction and repulsion forces. The effectiveness of the CFA in different terms is tested on basic benchmark problems. Then, the quality of the CFA to achieve accurate results in different aspects is examined and proven on economic load dispatch problems including 4 different size cases, 6, 10, 15, and 110-unit test systems. Finally, the results are compared with other inspired algorithms as well as results reported in the literature. The simulation results provide evidence for the well-organized and efficient performance of the CFA algorithm in solving great diversity of nonlinear optimization problems

    A hybrid Jaya algorithm for reliability–redundancy allocation problems

    Full text link
    © 2017 Informa UK Limited, trading as Taylor & Francis Group. This article proposes an efficient improved hybrid Jaya algorithm based on time-varying acceleration coefficients (TVACs) and the learning phase introduced in teaching–learning-based optimization (TLBO), named the LJaya-TVAC algorithm, for solving various types of nonlinear mixed-integer reliability–redundancy allocation problems (RRAPs) and standard real-parameter test functions. RRAPs include series, series–parallel, complex (bridge) and overspeed protection systems. The search power of the proposed LJaya-TVAC algorithm for finding the optimal solutions is first tested on the standard real-parameter unimodal and multi-modal functions with dimensions of 30–100, and then tested on various types of nonlinear mixed-integer RRAPs. The results are compared with the original Jaya algorithm and the best results reported in the recent literature. The optimal results obtained with the proposed LJaya-TVAC algorithm provide evidence for its better and acceptable optimization performance compared to the original Jaya algorithm and other reported optimal results
    corecore