39,547 research outputs found

    Investigating Bell Inequalities for Multidimensional Relevance Judgments in Information Retrieval

    Get PDF
    Relevance judgment in Information Retrieval is influenced by multiple factors. These include not only the topicality of the documents but also other user oriented factors like trust, user interest, etc. Recent works have identified and classified these various factors into seven dimensions of relevance. In a previous work, these relevance dimensions were quantified and user's cognitive state with respect to a document was represented as a state vector in a Hilbert Space, with each relevance dimension representing a basis. It was observed that relevance dimensions are incompatible in some documents, when making a judgment. Incompatibility being a fundamental feature of Quantum Theory, this motivated us to test the Quantum nature of relevance judgments using Bell type inequalities. However, none of the Bell-type inequalities tested have shown any violation. We discuss our methodology to construct incompatible basis for documents from real world query log data, the experiments to test Bell inequalities on this dataset and possible reasons for the lack of violation

    A higher quantum bound for the V\'ertesi-Bene-Bell-inequality and the role of POVMs regarding its threshold detection efficiency

    Full text link
    Recently, V\'{e}rtesi and Bene [Phys. Rev. A. {\bf 82}, 062115 (2010)] derived a two-qubit Bell inequality, ICH3I_{CH3}, which they show to be maximally violated only when more general positive operator valued measures (POVMs) are used instead of the usual von Neumann measurements. Here we consider a general parametrization for the three-element-POVM involved in the Bell test and obtain a higher quantum bound for the ICH3I_{CH3}-inequality. With a higher quantum bound for ICH3I_{CH3}, we investigate if there is an experimental setup that can be used for observing that POVMs give higher violations in Bell tests based on this inequality. We analyze the maximum errors supported by the inequality to identify a source of entangled photons that can be used for the test. Then, we study if POVMs are also relevant in the more realistic case that partially entangled states are used in the experiment. Finally, we investigate which are the required efficiencies of the ICH3I_{CH3}-inequality, and the type of measurements involved, for closing the detection loophole. We obtain that POVMs allow for the lowest threshold detection efficiency, and that it is comparable to the minimal (in the case of two-qubits) required detection efficiency of the Clauser-Horne-Bell-inequality.Comment: 11 Pages, 16 Figure

    Analysis of Elliptically Polarized Maximally Entangled States for Bell Inequality Tests

    Get PDF
    When elliptically polarized maximally entangled states are considered, i.e., states having a non random phase factor between the two bipartite polarization components, the standard settings used for optimal violation of Bell inequalities are no longer adapted. One way to retrieve the maximal amount of violation is to compensate for this phase while keeping the standard Bell inequality analysis settings. We propose in this paper a general theoretical approach that allows determining and adjusting the phase of elliptically polarized maximally entangled states in order to optimize the violation of Bell inequalities. The formalism is also applied to several suggested experimental phase compensation schemes. In order to emphasize the simplicity and relevance of our approach, we also describe an experimental implementation using a standard Soleil-Babinet phase compensator. This device is employed to correct the phase that appears in the maximally entangled state generated from a type-II nonlinear photon-pair source after the photons are created and distributed over fiber channels.Comment: 8 page

    Testing non-local realism with entangled coherent states

    Full text link
    We investigate the violation of non-local realism using entangled coherent states (ECS) under nonlinear operations and homodyne measurements. We address recently proposed Leggett-type inequalities, including a class of optimized incompatibility ones and thoroughly assess the effects of detection inefficiency.Comment: 7 pages, 6 figures, RevTeX4, accepted for publication in Phys. Rev.

    Entanglement and Bell's inequality violation above room temperature in metal carboxylates

    Full text link
    In the present work we show that a special family of materials, the metal carboxylates, may have entangled states up to very high temperatures. From magnetic susceptibility measurements, we have estimated the critical temperature below which entanglement exists in the cooper carboxylate \{Cu2_2(O2_2CH)4_4\}\{Cu(O2_2CH)2_2(2-methylpyridine)2_2\}, and we have found this to be above room temperature (Te∼630T_e \sim 630 K). Furthermore, the results show that the system remains maximally entangled until close to ∼100\sim 100 K and the Bell's inequality is violated up to nearly room temperature (∼290\sim 290 K)
    • …
    corecore