4 research outputs found

    The relationship between IR and multimedia databases

    Get PDF
    Modern extensible database systems support multimedia data through ADTs. However, because of the problems with multimedia query formulation, this support is not sufficient.\ud \ud Multimedia querying requires an iterative search process involving many different representations of the objects in the database. The support that is needed is very similar to the processes in information retrieval.\ud \ud Based on this observation, we develop the miRRor architecture for multimedia query processing. We design a layered framework based on information retrieval techniques, to provide a usable query interface to the multimedia database.\ud \ud First, we introduce a concept layer to enable reasoning over low-level concepts in the database.\ud \ud Second, we add an evidential reasoning layer as an intermediate between the user and the concept layer.\ud \ud Third, we add the functionality to process the users' relevance feedback.\ud \ud We then adapt the inference network model from text retrieval to an evidential reasoning model for multimedia query processing.\ud \ud We conclude with an outline for implementation of miRRor on top of the Monet extensible database system

    Database technology and the management of multimedia data in Mirror

    Get PDF
    Multimedia digital libraries require an open distributed architecture instead of a monolithic database system. In the Mirror project, we use the Monet extensible database kernel to manage different representations of multimedia objects. To maintain independence between content, meta-data, and the creation of meta-data, we allow distribution of data and operations using CORBA. This open architecture introduces new problems for data access. From an end user’s perspective, the problem is how to search the available representations to fulfill an actual information need; the conceptual gap between human perceptual processes and the meta-data is too large. From a system’s perspective, several representations of the data may semantically overlap or be irrelevant. We address these problems with an iterative query process and active user participation through relevance feedback. A retrieval model based on inference networks assists the user with query formulation. The integration of this model into the database design has two advantages. First, the user can query both the logical and the content structure of multimedia objects. Second, the use of different data models in the logical and the physical database design provides data independence and allows algebraic query optimization. We illustrate query processing with a music retrieval application

    Database Optimization Aspects for Information Retrieval

    Get PDF
    There is a growing need for systems that can process queries, combining both structured data and text. One way to provide such functionality is to integrate information retrieval (IR) techniques in a database management system (DBMS). However, both IR and database research have been separate research fields for decades, resulting in different - even conflicting - approaches to data management. Each DBMS has a component called a "query optimizer", which plays a crucial role in the efficiency and flexibility of the system. So, for successful integration the IR techniques and data structures, as well as the DBMS query optimizer, should be adapted to enable mutual cooperation. The author concentrates on top-N queries - a common class of IR queries. An IR top-N query asks for the N best documents given a set of keywords. The author proposes processing the data in batches as a compromise between IR and DBMS query processing. Experiments with this technique show that porting IR optimization techniques is (still) not a promising option due to the additional administrative overhead. Two new mathematical models are introduced to eliminate this overhead: a model that predicts selectivity, which is a crucial factor in the execution costs, and a model that predicts the quality of the top-N

    Content And Multimedia Database Management Systems

    Get PDF
    A database management system is a general-purpose software system that facilitates the processes of defining, constructing, and manipulating databases for various applications. The main characteristic of the ‘database approach’ is that it increases the value of data by its emphasis on data independence. DBMSs, and in particular those based on the relational data model, have been very successful at the management of administrative data in the business domain. This thesis has investigated data management in multimedia digital libraries, and its implications on the design of database management systems. The main problem of multimedia data management is providing access to the stored objects. The content structure of administrative data is easily represented in alphanumeric values. Thus, database technology has primarily focused on handling the objects’ logical structure. In the case of multimedia data, representation of content is far from trivial though, and not supported by current database management systems
    corecore