3 research outputs found

    The Accurate Location Estimation of Sensor Node Using Received Signal Strength Measurements in Large-Scale Farmland

    Get PDF
    The range measurement is the premise for location, and the precise range measurement is the assurance of accurate location. Hence, it is essential to know the accurate internode distance. It is noted that the path loss model plays an important role in improving the quality and reliability of ranging accuracy. Therefore, it is necessary to investigate the path loss model in actual propagation environment. Through the analysis of experiments performed at the wheat field, we find that the best fitted parametric exponential decay model (OFPEDM) can achieve a higher distance estimation accuracy and adaptability to environment variations in comparison to the traditional path loss models. Based on the proposed OFPEDM, we perform the RSSI-based location experiments in wheat field. Through simulating the location characteristics in MATLAB, we find that for all the unknown nodes, the location errors range from 0.0004 m to 5.1739 m. The location error in this RSSI-based location algorithm is acceptable in the wide areas such as wheat field. The findings in this research may provide reference for location estimation in large-scale farmland

    Wireless Channel Path-Loss Modelling for Agricultural and Vegetation Environments: A Survey

    Get PDF
    This work undertakes an extensive survey of the channel modelling methods and path-loss characterization carried out in agricultural fields and vegetation environments in an attempt to study the state-of-the-art in this field, which, though vastly explored, still presents extremely diverse opportunities and challenges. The interface for communication between nodes in a typical agricultural field is the wireless channel or air interface, making it imperative to address the impairments that are exclusive to such a communication scenario by studying the characteristics of the medium. The performance of the channel is a direct indicator of the quality of communication. It is required to have a lucid understanding of the channel to ensure quality in transmission of the required information, while simultaneously ensuring maximum capacity by employing limited resources. The impairments that are the very nature of a typical wireless channel are treated in an explicit manner covering the theoretical and mathematical models, analytical aspects and empirical models. Although there are several propagation models characterized for generic indoor and outdoor environments, these cannot be applied to agricultural, vegetation, forest and foliage scenarios due to the various additional factors that are specific to these environments. Owing to the wide variety, size, properties and span of the foliage, it also becomes extremely challenging to develop a generic predictive model for all kinds of crops or vegetation. The survey is categorized into fields containing specific crops, greenhouse environment and forest/foliage scenarios and the key findings are presented
    corecore