6,116 research outputs found

    Public Key Exchange Using Matrices Over Group Rings

    Get PDF
    We offer a public key exchange protocol in the spirit of Diffie-Hellman, but we use (small) matrices over a group ring of a (small) symmetric group as the platform. This "nested structure" of the platform makes computation very efficient for legitimate parties. We discuss security of this scheme by addressing the Decision Diffie-Hellman (DDH) and Computational Diffie-Hellman (CDH) problems for our platform.Comment: 21 page

    Pairing-based identification schemes

    Get PDF
    We propose four different identification schemes that make use of bilinear pairings, and prove their security under certain computational assumptions. Each of the schemes is more efficient and/or more secure than any known pairing-based identification scheme

    Two-sources Randomness Extractors for Elliptic Curves

    Get PDF
    This paper studies the task of two-sources randomness extractors for elliptic curves defined over finite fields KK, where KK can be a prime or a binary field. In fact, we introduce new constructions of functions over elliptic curves which take in input two random points from two differents subgroups. In other words, for a ginven elliptic curve EE defined over a finite field Fq\mathbb{F}_q and two random points P∈PP \in \mathcal{P} and Q∈QQ\in \mathcal{Q}, where P\mathcal{P} and Q\mathcal{Q} are two subgroups of E(Fq)E(\mathbb{F}_q), our function extracts the least significant bits of the abscissa of the point PβŠ•QP\oplus Q when qq is a large prime, and the kk-first Fp\mathbb{F}_p coefficients of the asbcissa of the point PβŠ•QP\oplus Q when q=pnq = p^n, where pp is a prime greater than 55. We show that the extracted bits are close to uniform. Our construction extends some interesting randomness extractors for elliptic curves, namely those defined in \cite{op} and \cite{ciss1,ciss2}, when P=Q\mathcal{P} = \mathcal{Q}. The proposed constructions can be used in any cryptographic schemes which require extraction of random bits from two sources over elliptic curves, namely in key exchange protole, design of strong pseudo-random number generators, etc

    Finding Significant Fourier Coefficients: Clarifications, Simplifications, Applications and Limitations

    Get PDF
    Ideas from Fourier analysis have been used in cryptography for the last three decades. Akavia, Goldwasser and Safra unified some of these ideas to give a complete algorithm that finds significant Fourier coefficients of functions on any finite abelian group. Their algorithm stimulated a lot of interest in the cryptography community, especially in the context of `bit security'. This manuscript attempts to be a friendly and comprehensive guide to the tools and results in this field. The intended readership is cryptographers who have heard about these tools and seek an understanding of their mechanics and their usefulness and limitations. A compact overview of the algorithm is presented with emphasis on the ideas behind it. We show how these ideas can be extended to a `modulus-switching' variant of the algorithm. We survey some applications of this algorithm, and explain that several results should be taken in the right context. In particular, we point out that some of the most important bit security problems are still open. Our original contributions include: a discussion of the limitations on the usefulness of these tools; an answer to an open question about the modular inversion hidden number problem

    A New Cryptosystem Based On Hidden Order Groups

    Get PDF
    Let G1G_1 be a cyclic multiplicative group of order nn. It is known that the Diffie-Hellman problem is random self-reducible in G1G_1 with respect to a fixed generator gg if Ο•(n)\phi(n) is known. That is, given g,gx∈G1g, g^x\in G_1 and having oracle access to a `Diffie-Hellman Problem' solver with fixed generator gg, it is possible to compute g1/x∈G1g^{1/x} \in G_1 in polynomial time (see theorem 3.2). On the other hand, it is not known if such a reduction exists when Ο•(n)\phi(n) is unknown (see conjuncture 3.1). We exploit this ``gap'' to construct a cryptosystem based on hidden order groups and present a practical implementation of a novel cryptographic primitive called an \emph{Oracle Strong Associative One-Way Function} (O-SAOWF). O-SAOWFs have applications in multiparty protocols. We demonstrate this by presenting a key agreement protocol for dynamic ad-hoc groups.Comment: removed examples for multiparty key agreement and join protocols, since they are redundan
    • …
    corecore