285 research outputs found

    Set-Theoretic Completeness for Epistemic and Conditional Logic

    Full text link
    The standard approach to logic in the literature in philosophy and mathematics, which has also been adopted in computer science, is to define a language (the syntax), an appropriate class of models together with an interpretation of formulas in the language (the semantics), a collection of axioms and rules of inference characterizing reasoning (the proof theory), and then relate the proof theory to the semantics via soundness and completeness results. Here we consider an approach that is more common in the economics literature, which works purely at the semantic, set-theoretic level. We provide set-theoretic completeness results for a number of epistemic and conditional logics, and contrast the expressive power of the syntactic and set-theoretic approachesComment: This is an expanded version of a paper that appeared in AI and Mathematics, 199

    A QBF-based Formalization of Abstract Argumentation Semantics

    Get PDF
    Supported by the National Research Fund, Luxembourg (LAAMI project) and by the Engineering and Physical Sciences Research Council (EPSRC, UK), grant ref. EP/J012084/1 (SAsSY project).Peer reviewedPostprin

    Preferential Multi-Context Systems

    Full text link
    Multi-context systems (MCS) presented by Brewka and Eiter can be considered as a promising way to interlink decentralized and heterogeneous knowledge contexts. In this paper, we propose preferential multi-context systems (PMCS), which provide a framework for incorporating a total preorder relation over contexts in a multi-context system. In a given PMCS, its contexts are divided into several parts according to the total preorder relation over them, moreover, only information flows from a context to ones of the same part or less preferred parts are allowed to occur. As such, the first ll preferred parts of an PMCS always fully capture the information exchange between contexts of these parts, and then compose another meaningful PMCS, termed the ll-section of that PMCS. We generalize the equilibrium semantics for an MCS to the (maximal) lā‰¤l_{\leq}-equilibrium which represents belief states at least acceptable for the ll-section of an PMCS. We also investigate inconsistency analysis in PMCS and related computational complexity issues

    Conditionals and modularity in general logics

    Full text link
    In this work in progress, we discuss independence and interpolation and related topics for classical, modal, and non-monotonic logics

    A reconstruction of the multipreference closure

    Full text link
    The paper describes a preferential approach for dealing with exceptions in KLM preferential logics, based on the rational closure. It is well known that the rational closure does not allow an independent handling of the inheritance of different defeasible properties of concepts. Several solutions have been proposed to face this problem and the lexicographic closure is the most notable one. In this work, we consider an alternative closure construction, called the Multi Preference closure (MP-closure), that has been first considered for reasoning with exceptions in DLs. Here, we reconstruct the notion of MP-closure in the propositional case and we show that it is a natural variant of Lehmann's lexicographic closure. Abandoning Maximal Entropy (an alternative route already considered but not explored by Lehmann) leads to a construction which exploits a different lexicographic ordering w.r.t. the lexicographic closure, and determines a preferential consequence relation rather than a rational consequence relation. We show that, building on the MP-closure semantics, rationality can be recovered, at least from the semantic point of view, resulting in a rational consequence relation which is stronger than the rational closure, but incomparable with the lexicographic closure. We also show that the MP-closure is stronger than the Relevant Closure.Comment: 57 page
    • ā€¦
    corecore