26,435 research outputs found

    Proximal Mean-field for Neural Network Quantization

    Full text link
    Compressing large Neural Networks (NN) by quantizing the parameters, while maintaining the performance is highly desirable due to reduced memory and time complexity. In this work, we cast NN quantization as a discrete labelling problem, and by examining relaxations, we design an efficient iterative optimization procedure that involves stochastic gradient descent followed by a projection. We prove that our simple projected gradient descent approach is, in fact, equivalent to a proximal version of the well-known mean-field method. These findings would allow the decades-old and theoretically grounded research on MRF optimization to be used to design better network quantization schemes. Our experiments on standard classification datasets (MNIST, CIFAR10/100, TinyImageNet) with convolutional and residual architectures show that our algorithm obtains fully-quantized networks with accuracies very close to the floating-point reference networks

    On Training and Evaluation of Neural Network Approaches for Model Predictive Control

    Full text link
    The contribution of this paper is a framework for training and evaluation of Model Predictive Control (MPC) implemented using constrained neural networks. Recent studies have proposed to use neural networks with differentiable convex optimization layers to implement model predictive controllers. The motivation is to replace real-time optimization in safety critical feedback control systems with learnt mappings in the form of neural networks with optimization layers. Such mappings take as the input the state vector and predict the control law as the output. The learning takes place using training data generated from off-line MPC simulations. However, a general framework for characterization of learning approaches in terms of both model validation and efficient training data generation is lacking in literature. In this paper, we take the first steps towards developing such a coherent framework. We discuss how the learning problem has similarities with system identification, in particular input design, model structure selection and model validation. We consider the study of neural network architectures in PyTorch with the explicit MPC constraints implemented as a differentiable optimization layer using CVXPY. We propose an efficient approach of generating MPC input samples subject to the MPC model constraints using a hit-and-run sampler. The corresponding true outputs are generated by solving the MPC offline using OSOP. We propose different metrics to validate the resulting approaches. Our study further aims to explore the advantages of incorporating domain knowledge into the network structure from a training and evaluation perspective. Different model structures are numerically tested using the proposed framework in order to obtain more insights in the properties of constrained neural networks based MPC

    Fast L1-Minimization Algorithm for Sparse Approximation Based on an Improved LPNN-LCA framework

    Full text link
    The aim of sparse approximation is to estimate a sparse signal according to the measurement matrix and an observation vector. It is widely used in data analytics, image processing, and communication, etc. Up to now, a lot of research has been done in this area, and many off-the-shelf algorithms have been proposed. However, most of them cannot offer a real-time solution. To some extent, this shortcoming limits its application prospects. To address this issue, we devise a novel sparse approximation algorithm based on Lagrange programming neural network (LPNN), locally competitive algorithm (LCA), and projection theorem. LPNN and LCA are both analog neural network which can help us get a real-time solution. The non-differentiable objective function can be solved by the concept of LCA. Utilizing the projection theorem, we further modify the dynamics and proposed a new system with global asymptotic stability. Simulation results show that the proposed sparse approximation method has the real-time solutions with satisfactory MSEs

    Constrained Deep Learning using Conditional Gradient and Applications in Computer Vision

    Full text link
    A number of results have recently demonstrated the benefits of incorporating various constraints when training deep architectures in vision and machine learning. The advantages range from guarantees for statistical generalization to better accuracy to compression. But support for general constraints within widely used libraries remains scarce and their broader deployment within many applications that can benefit from them remains under-explored. Part of the reason is that Stochastic gradient descent (SGD), the workhorse for training deep neural networks, does not natively deal with constraints with global scope very well. In this paper, we revisit a classical first order scheme from numerical optimization, Conditional Gradients (CG), that has, thus far had limited applicability in training deep models. We show via rigorous analysis how various constraints can be naturally handled by modifications of this algorithm. We provide convergence guarantees and show a suite of immediate benefits that are possible -- from training ResNets with fewer layers but better accuracy simply by substituting in our version of CG to faster training of GANs with 50% fewer epochs in image inpainting applications to provably better generalization guarantees using efficiently implementable forms of recently proposed regularizers

    Learning Sparse Visual Representations with Leaky Capped Norm Regularizers

    Full text link
    Sparsity inducing regularization is an important part for learning over-complete visual representations. Despite the popularity of â„“1\ell_1 regularization, in this paper, we investigate the usage of non-convex regularizations in this problem. Our contribution consists of three parts. First, we propose the leaky capped norm regularization (LCNR), which allows model weights below a certain threshold to be regularized more strongly as opposed to those above, therefore imposes strong sparsity and only introduces controllable estimation bias. We propose a majorization-minimization algorithm to optimize the joint objective function. Second, our study over monocular 3D shape recovery and neural networks with LCNR outperforms â„“1\ell_1 and other non-convex regularizations, achieving state-of-the-art performance and faster convergence. Third, we prove a theoretical global convergence speed on the 3D recovery problem. To the best of our knowledge, this is the first convergence analysis of the 3D recovery problem

    Rectified Factor Networks

    Full text link
    We propose rectified factor networks (RFNs) to efficiently construct very sparse, non-linear, high-dimensional representations of the input. RFN models identify rare and small events in the input, have a low interference between code units, have a small reconstruction error, and explain the data covariance structure. RFN learning is a generalized alternating minimization algorithm derived from the posterior regularization method which enforces non-negative and normalized posterior means. We proof convergence and correctness of the RFN learning algorithm. On benchmarks, RFNs are compared to other unsupervised methods like autoencoders, RBMs, factor analysis, ICA, and PCA. In contrast to previous sparse coding methods, RFNs yield sparser codes, capture the data's covariance structure more precisely, and have a significantly smaller reconstruction error. We test RFNs as pretraining technique for deep networks on different vision datasets, where RFNs were superior to RBMs and autoencoders. On gene expression data from two pharmaceutical drug discovery studies, RFNs detected small and rare gene modules that revealed highly relevant new biological insights which were so far missed by other unsupervised methods.Comment: 9 pages + 49 pages supplemen

    Controlling Neural Networks via Energy Dissipation

    Full text link
    The last decade has shown a tremendous success in solving various computer vision problems with the help of deep learning techniques. Lately, many works have demonstrated that learning-based approaches with suitable network architectures even exhibit superior performance for the solution of (ill-posed) image reconstruction problems such as deblurring, super-resolution, or medical image reconstruction. The drawback of purely learning-based methods, however, is that they cannot provide provable guarantees for the trained network to follow a given data formation process during inference. In this work we propose energy dissipating networks that iteratively compute a descent direction with respect to a given cost function or energy at the currently estimated reconstruction. Therefore, an adaptive step size rule such as a line-search, along with a suitable number of iterations can guarantee the reconstruction to follow a given data formation model encoded in the energy to arbitrary precision, and hence control the model's behavior even during test time. We prove that under standard assumptions, descent using the direction predicted by the network converges (linearly) to the global minimum of the energy. We illustrate the effectiveness of the proposed approach in experiments on single image super resolution and computed tomography (CT) reconstruction, and further illustrate extensions to convex feasibility problems.Comment: Published as a conference paper at ICCV 2019, Seou

    Convergence Analyses of Online ADAM Algorithm in Convex Setting and Two-Layer ReLU Neural Network

    Full text link
    Nowadays, online learning is an appealing learning paradigm, which is of great interest in practice due to the recent emergence of large scale applications such as online advertising placement and online web ranking. Standard online learning assumes a finite number of samples while in practice data is streamed infinitely. In such a setting gradient descent with a diminishing learning rate does not work. We first introduce regret with rolling window, a new performance metric for online streaming learning, which measures the performance of an algorithm on every fixed number of contiguous samples. At the same time, we propose a family of algorithms based on gradient descent with a constant or adaptive learning rate and provide very technical analyses establishing regret bound properties of the algorithms. We cover the convex setting showing the regret of the order of the square root of the size of the window in the constant and dynamic learning rate scenarios. Our proof is applicable also to the standard online setting where we provide the first analysis of the same regret order (the previous proofs have flaws). We also study a two layer neural network setting with ReLU activation. In this case we establish that if initial weights are close to a stationary point, the same square root regret bound is attainable. We conduct computational experiments demonstrating a superior performance of the proposed algorithms

    A Method Based on Convex Cone Model for Image-Set Classification with CNN Features

    Full text link
    In this paper, we propose a method for image-set classification based on convex cone models, focusing on the effectiveness of convolutional neural network (CNN) features as inputs. CNN features have non-negative values when using the rectified linear unit as an activation function. This naturally leads us to model a set of CNN features by a convex cone and measure the geometric similarity of convex cones for classification. To establish this framework, we sequentially define multiple angles between two convex cones by repeating the alternating least squares method and then define the geometric similarity between the cones using the obtained angles. Moreover, to enhance our method, we introduce a discriminant space, maximizing the between-class variance (gaps) and minimizes the within-class variance of the projected convex cones onto the discriminant space, similar to a Fisher discriminant analysis. Finally, classification is based on the similarity between projected convex cones. The effectiveness of the proposed method was demonstrated experimentally using a private, multi-view hand shape dataset and two public databases.Comment: Accepted at the International Joint Conference on Neural Networks, IJCNN, 201

    Memory Bounded Deep Convolutional Networks

    Full text link
    In this work, we investigate the use of sparsity-inducing regularizers during training of Convolution Neural Networks (CNNs). These regularizers encourage that fewer connections in the convolution and fully connected layers take non-zero values and in effect result in sparse connectivity between hidden units in the deep network. This in turn reduces the memory and runtime cost involved in deploying the learned CNNs. We show that training with such regularization can still be performed using stochastic gradient descent implying that it can be used easily in existing codebases. Experimental evaluation of our approach on MNIST, CIFAR, and ImageNet datasets shows that our regularizers can result in dramatic reductions in memory requirements. For instance, when applied on AlexNet, our method can reduce the memory consumption by a factor of four with minimal loss in accuracy
    • …
    corecore