5 research outputs found

    Thread-spawning schemes for speculative multithreading

    Get PDF
    Speculative multithreading has been recently proposed to boost performance by means of exploiting thread-level parallelism in applications difficult to parallelize. The performance of these processors heavily depends on the partitioning policy used to split the program into threads. Previous work uses heuristics to spawn speculative threads based on easily-detectable program constructs such as loops or subroutines. In this work we propose a profile-based mechanism to divide programs into threads by searching for those parts of the code that have certain features that could benefit from potential thread-level parallelism. Our profile-based spawning scheme is evaluated on a Clustered Speculative Multithreaded Processor and results show large performance benefits. When the proposed spawning scheme is compared with traditional heuristics, we outperform them by almost 20%. When a realistic value predictor and a 8-cycle thread initialization penalty is considered, the performance difference between them is maintained. The speed-up over a single thread execution is higher than 5x for a 16-thread-unit processor and close to 2x for a 4-thread-unit processor.Peer ReviewedPostprint (published version

    Data speculative multithreaded architecture

    Get PDF
    We present a novel processor microarchitecture that relieves three of the most important bottlenecks of superscalar processors: the serialization imposed by true dependences, the relatively small window size and the instruction fetch bandwidth. The new architecture executes simultaneously multiple threads of control obtained from a single program by means of control speculation techniques that do not require any compiler/user support nor any special feature in the instruction set architecture. The multiple simultaneous threads execute different iterations of the same loop, which require the same fetch bandwidth as a single thread since they share the same code. Inter-thread dependences as well as the values that flow through them are speculated by means of data prediction techniques. The preliminary evaluation results show a significant speed-up when compared with a superscalar processor. In fact, the new processor architecture can achieve an IPC (instructions per cycle) rate even larger than the peak fetch bandwidthPeer ReviewedPostprint (published version

    The design and performance of a conflict-avoiding cache

    Get PDF
    High performance architectures depend heavily on efficient multi-level memory hierarchies to minimize the cost of accessing data. This dependence will increase with the expected increases in relative distance to main memory. There have been a number of published proposals for cache conflict-avoidance schemes. We investigate the design and performance of conflict-avoiding cache architectures based on polynomial modulus functions, which earlier research has shown to be highly effective at reducing conflict miss ratios. We examine a number of practical implementation issues and present experimental evidence to support the claim that pseudo-randomly indexed caches are both effective in performance terms and practical from an implementation viewpoint.Peer Reviewe

    Customizing the Computation Capabilities of Microprocessors.

    Full text link
    Designers of microprocessor-based systems must constantly improve performance and increase computational efficiency in their designs to create value. To this end, it is increasingly common to see computation accelerators in general-purpose processor designs. Computation accelerators collapse portions of an application's dataflow graph, reducing the critical path of computations, easing the burden on processor resources, and reducing energy consumption in systems. There are many problems associated with adding accelerators to microprocessors, though. Design of accelerators, architectural integration, and software support all present major challenges. This dissertation tackles these challenges in the context of accelerators targeting acyclic and cyclic patterns of computation. First, a technique to identify critical computation subgraphs within an application set is presented. This technique is hardware-cognizant and effectively generates a set of instruction set extensions given a domain of target applications. Next, several general-purpose accelerator structures are quantitatively designed using critical subgraph analysis for a broad application set. The next challenge is architectural integration of accelerators. Traditionally, software invokes accelerators by statically encoding new instructions into the application binary. This is incredibly costly, though, requiring many portions of hardware and software to be redesigned. This dissertation develops strategies to utilize accelerators, without changing the instruction set. In the proposed approach, the microarchitecture translates applications at run-time, replacing computation subgraphs with microcode to utilize accelerators. We explore the tradeoffs in performing difficult aspects of the translation at compile-time, while retaining run-time replacement. This culminates in a simple microarchitectural interface that supports a plug-and-play model for integrating accelerators into a pre-designed microprocessor. Software support is the last challenge in dealing with computation accelerators. The primary issue is difficulty in generating high-quality code utilizing accelerators. Hand-written assembly code is standard in industry, and if compiler support does exist, simple greedy algorithms are common. In this work, we investigate more thorough techniques for compiling for computation accelerators. Where greedy heuristics only explore one possible solution, the techniques in this dissertation explore the entire design space, when possible. Intelligent pruning methods ensure that compilation is both tractable and scalable.Ph.D.Computer Science & EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/57633/2/ntclark_1.pd

    The Performance Potential of Data Dependence Speculation Collapsing

    No full text
    Two hardware methods for remedying the effects of true data dependences are studied. The first method, dependence speculation, is used to eliminate address generation-load dependences. This is enabled by address prediction that permits load instructions to proceed speculatively without waiting for their address operands. The second technique, dependence collapsing, is used to eliminate data dependences by combining a dependence among multiple instructions into one instruction. The potential of these techniques for improving processor performance is demonstrated via trace-driven simulation. When both techniques are used with maximum issue widths of 4, 8, 16, and 32, the overall speedups in comparison to a base instruction level parallel machine are 1.20, 1.35, 1.51, and 1.66, respectively. In general, dependence collapsing contributes the majority of the improvement in performance. Under the dependence collapsing model, 29% to 47% of the total number of instructions in a trace may be co..
    corecore