4 research outputs found

    Identification of putative domain linkers by a neural network – application to a large sequence database

    Get PDF
    BACKGROUND: The reliable dissection of large proteins into structural domains represents an important issue for structural genomics/proteomics projects. To provide a practical approach to this issue, we tested the ability of neural network to identify domain linkers from the SWISSPROT database (101602 sequences). RESULTS: Our search detected 3009 putative domain linkers adjacent to or overlapping with domains, as defined by sequence similarity to either Protein Data Bank (PDB) or Conserved Domain Database (CDD) sequences. Among these putative linkers, 75% were "correctly" located within 20 residues of a domain terminus, and the remaining 25% were found in the middle of a domain, and probably represented failed predictions. Moreover, our neural network predicted 5124 putative domain linkers in structurally un-annotated regions without sequence similarity to PDB or CDD sequences, which suggest to the possible existence of novel structural domains. As a comparison, we performed the same analysis by identifying low-complexity regions (LCR), which are known to encode unstructured polypeptide segments, and observed that the fraction of LCRs that correlate with domain termini is similar to that of domain linkers. However, domain linkers and LCRs appeared to identify different types of domain boundary regions, as only 32% of the putative domain linkers overlapped with LCRs. CONCLUSION: Overall, our study indicates that the two methods detect independent and complementary regions, and that the combination of these methods can substantially improve the sensitivity of the domain boundary prediction. This finding should enable the identification of novel structural domains, yielding new targets for large scale protein analyses

    Genomic scale sub-family assignment of protein domains

    Get PDF
    Many classification schemes for proteins and domains are either hierarchical or semi-hierarchical yet most databases, especially those offering genome-wide analysis, only provide assignments to sequences at one level of their hierarchy. Given an established hierarchy, the problem of assigning new sequences to lower levels of that existing hierarchy is less hard (but no less important) than the initial top level assignment which requires the detection of the most distant relationships. A solution to this problem is described here in the form of a new procedure which can be thought of as a hybrid between pairwise and profile methods. The hybrid method is a general procedure that can be applied to any pre-defined hierarchy, at any level, including in principle multiple sub-levels. It has been tested on the SCOP classification via the SUPERFAMILY database and performs significantly better than either pairwise or profile methods alone. Perhaps the greatest advantage of the hybrid method over other possible approaches to the problem is that within the framework of an existing profile library, the assignments are fully automatic and come at almost no additional computational cost. Hence it has already been applied at the SCOP family level to all genomes in the SUPERFAMILY database, providing a wealth of new data to the biological and bioinformatics communities
    corecore