43 research outputs found

    Quantum speed limit for relativistic spin-0 and spin-1 bosons on commutative and noncommutative planes

    Get PDF
    Quantum speed limits of relativistic charged spin-0 and spin-1 bosons in the background of a homogeneous magnetic field are studied on both commutative and oncommutative planes. We show that, on the commutative plane, the average speeds of wave packets along the radial direction during the interval in which a quantum state evolving from an initial state to the orthogonal final one can not exceed the speed of light, regardless of the intensities of the magnetic field. However, due to the noncommutativity, the average speeds of the wave packets on noncommutative plane will exceed the speed of light in vacuum provided the intensity of the magnetic field is strong enough. It is a clear signature of violating Lorentz invariance in quantum mechanics region.Comment: 8 pages, no figures. arXiv admin note: text overlap with arXiv:1702.0316

    The DKP oscillator with a linear interaction in the cosmic string space-time

    Full text link
    We study the relativistic quantum dynamics of a DKP oscillator field subject to a linear interaction in cosmic string space-time in order to better understand the effects of gravitational fields produced by topological defects on the scalar field. We obtain the solution of DKP oscillator in the cosmic string background. Also, we solve it with an ansatz in presence of linear interaction. We obtain the eigenfunctions and the energy levels of the relativistic field in that background.Comment: 14 pages, no figure, comments are welcom

    (2 +1)-dimensional Duffin-Kemmer-Petiau oscillator under a magnetic field in the presence of a minimal length in the noncommutative space

    Full text link
    Using the momentum space representation, we study the (2 +1)-dimensional Duffin-Kemmer-Petiau oscillator for spin 0 particle under a magnetic field in the presence of a minimal length in the noncommutative space. The explicit form of energy eigenvalues are found, the wave functions and the corresponding probability density are reported in terms of the Jacobi polynomials. Additionally, we also discuss the special cases and depict the corresponding numerical results

    ON THE THREE-DIMENSIONAL PAULI EQUATION IN NONCOMMUTATIVE PHASE-SPACE

    Get PDF
    In this paper, we obtained the three-dimensional Pauli equation for a spin-1/2 particle in the presence of an electromagnetic field in a noncommutative phase-space as well as the corresponding deformed continuity equation, where the cases of a constant and non-constant magnetic fields are considered. Due to the absence of the current magnetization term in the deformed continuity equation as expected, we had to extract it from the noncommutative Pauli equation itself without modifying the continuity equation. It is shown that the non-constant magnetic field lifts the order of the noncommutativity parameter in both the Pauli equation and the corresponding continuity equation. However, we successfully examined the effect of the noncommutativity on the current density and the magnetization current. By using a classical treatment, we derived the semi-classical noncommutative partition function of the three-dimensional Pauli system of the one-particle and N-particle systems. Then, we employed it for calculating the corresponding Helmholtz free energy followed by the magnetization and the magnetic susceptibility of electrons in both commutative and noncommutative phase-spaces. Knowing that with both the three-dimensional Bopp-Shift transformation and the Moyal-Weyl product, we introduced the phase-space noncommutativity in the problems in question
    corecore